Your browser doesn't support javascript.
loading
Structure-Property Relationship of Piezoelectric Properties in Zeolitic Imidazolate Frameworks: A Computational Study.
Mula, Srinidhi; Donà, Lorenzo; Civalleri, Bartolomeo; van der Veen, Monique A.
Afiliación
  • Mula S; Department of Chemical Engineering, Technische Universiteit Delft, Delft2629HZ, The Netherlands.
  • Donà L; Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125Torino, Italy.
  • Civalleri B; Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125Torino, Italy.
  • van der Veen MA; Department of Chemical Engineering, Technische Universiteit Delft, Delft2629HZ, The Netherlands.
ACS Appl Mater Interfaces ; 14(45): 50803-50814, 2022 Nov 16.
Article en En | MEDLINE | ID: mdl-36321950
ABSTRACT
Metal-organic frameworks (MOFs) are a class of nanoporous crystalline materials with very high structural tunability. They possess a very low dielectric permittivity εr due to their porosity and hence are favorable for piezoelectric energy harvesting. Even though they have huge potential as piezoelectric materials, a detailed analysis and structure-property relationship of the piezoelectric properties in MOFs are lacking so far. This work focuses on a class of cubic non-centrosymmetric MOFs, namely, zeolitic imidazolate frameworks (ZIFs) to rationalize how the variation of different building blocks of the structure, that is, metal node and linker substituents affect the piezoelectric constants. The piezoelectric tensor for the ZIFs is computed from ab initio theoretical methods. From the calculations, we analyze the different contributions to the final piezoelectric constant d14, namely, the clamped ion (e140) and the internal strain (e14int) contributions and the mechanical properties. For the studied ZIFs, even though e14 (e140 + e14int) is similar for all ZIFs, the resultant piezoelectric coefficient d14 calculated from piezoelectric constant e14 and elastic compliance constant s44 varies significantly among the different structures. It is the largest for CdIF-1 (Cd2+ and -CH3 linker substituent). This is mainly due to the higher elasticity or flexibility of the framework. Interestingly, the magnitude of d14 for CdIF-1 is higher than II-VI inorganic piezoelectrics and of a similar magnitude as the quintessential piezoelectric polymer polyvinylidene fluoride.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: Países Bajos
...