Your browser doesn't support javascript.
loading
Cluster Alignment With Target Knowledge Mining for Unsupervised Domain Adaptation Semantic Segmentation.
IEEE Trans Image Process ; 31: 7403-7418, 2022.
Article en En | MEDLINE | ID: mdl-36417726
Unsupervised domain adaptation (UDA) carries out knowledge transfer from the labeled source domain to the unlabeled target domain. Existing feature alignment methods in UDA semantic segmentation achieve this goal by aligning the feature distribution between domains. However, these feature alignment methods ignore the domain-specific knowledge of the target domain. In consequence, 1) the correlation among pixels of the target domain is not explored; and 2) the classifier is not explicitly designed for the target domain distribution. To conquer these obstacles, we propose a novel cluster alignment framework, which mines the domain-specific knowledge when performing the alignment. Specifically, we design a multi-prototype clustering strategy to make the pixel features within the same class tightly distributed for the target domain. Subsequently, a contrastive strategy is developed to align the distributions between domains, with the clustered structure maintained. After that, a novel affinity-based normalized cut loss is devised to learn task-specific decision boundaries. Our method enhances the model's adaptability in the target domain, and can be used as a pre-adaptation for self-training to boost its performance. Sufficient experiments prove the effectiveness of our method against existing state-of-the-art methods on representative UDA benchmarks.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: IEEE Trans Image Process Asunto de la revista: INFORMATICA MEDICA Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: IEEE Trans Image Process Asunto de la revista: INFORMATICA MEDICA Año: 2022 Tipo del documento: Article
...