Your browser doesn't support javascript.
loading
Gas-assisted blade-coating of organic semiconductors: molecular assembly, device fabrication and complex thin-film structuring.
Mejri, Hadhemi; Haidisch, Anika; Krebsbach, Peter; Seiberlich, Mervin; Hernandez-Sosa, Gerardo; Perevedentsev, Aleksandr.
Afiliación
  • Mejri H; Light Technology Institute, Karlsruhe Institute of Technology, Engesser Str. 13, 76131 Karlsruhe, Germany. gerardo.sosa@kit.edu.
  • Haidisch A; InnovationLab, Speyerer Str. 4, 69115 Heidelberg, Germany.
  • Krebsbach P; Light Technology Institute, Karlsruhe Institute of Technology, Engesser Str. 13, 76131 Karlsruhe, Germany. gerardo.sosa@kit.edu.
  • Seiberlich M; InnovationLab, Speyerer Str. 4, 69115 Heidelberg, Germany.
  • Hernandez-Sosa G; Light Technology Institute, Karlsruhe Institute of Technology, Engesser Str. 13, 76131 Karlsruhe, Germany. gerardo.sosa@kit.edu.
  • Perevedentsev A; InnovationLab, Speyerer Str. 4, 69115 Heidelberg, Germany.
Nanoscale ; 14(47): 17743-17753, 2022 Dec 08.
Article en En | MEDLINE | ID: mdl-36421075
ABSTRACT
The competitive performance of optoelectronic devices based on advanced organic semiconductors increasingly calls for suitably scalable processing schemes to capitalise on their application potential. With performance benchmarks typically established by spin-coating fabrication, doctor-blade deposition represents a widely available roll-to-roll-compatible means for the preparation of large-area samples and establishing the device upscaling potential. However, the inherently slower film formation kinetics often result in unfavourable active layer microstructures, requiring empirical and material-inefficient optimisation of solutions to reach the performance of spin-coated devices. Here we present a versatile approach to achieving performance parity for spin- and blade-coated devices using in situ gas-assisted drying enabled by a modular 3D-printed attachment. This is illustrated for organic photodetectors (OPDs) featuring bulk heterojunction active layers comprising blends of P3HT and PM6 polymer donors with the nonfullerene acceptor ITIC. Compared to conventionally blade-coated devices, mild drying gas pressures of 0.5-2 bar yield up to a 10-fold enhancement of specific detectivity by maximising external quantum efficiency and suppressing dark-current. Furthermore, controlling gas flux distribution enables one-step fabrication of 1D chain conformation and 2D chain orientation patterns in, respectively, PFO and P3HTN2200 blend films, opening the possibility for high-throughput fabrication of devices with complex structured active layers.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2022 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2022 Tipo del documento: Article País de afiliación: Alemania
...