Your browser doesn't support javascript.
loading
Transcriptome Sequencing Reveals Tgf-ß-Mediated Noncoding RNA Regulatory Mechanisms Involved in DNA Damage in the 661W Photoreceptor Cell Line.
Huang, Yuke; Chen, Xi; Jiang, Zhigao; Luo, Qian; Wan, Linxi; Hou, Xiangtao; Yu, Keming; Zhuang, Jing.
Afiliación
  • Huang Y; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
  • Chen X; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
  • Jiang Z; School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China.
  • Luo Q; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
  • Wan L; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
  • Hou X; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
  • Yu K; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
  • Zhuang J; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
Genes (Basel) ; 13(11)2022 11 17.
Article en En | MEDLINE | ID: mdl-36421815
Transforming growth factor ß (Tgf-ß), a pleiotropic cytokine, can enhance DNA repair in various cells, including cancer cells and neurons. The noncoding regulatory system plays an important role in Tgf-ß-mediated biological activities, whereas few studies have explored its role in DNA damage and repair. In this study, we suggested that Tgf-ß improved while its inhibitor LSKL impaired DNA repair and cell viability in UV-irradiated 661W cells. Moreover, RNA-seq was carried out, and a total of 106 differentially expressed (DE)-mRNAs and 7 DE-lncRNAs were identified between UV/LSKL and UV/ctrl 661W cells. Gene ontology and Reactome analysis confirmed that the DE-mRNAs were enriched in multiple DNA damaged- and repair-related biological functions and pathways. We then constructed a ceRNA network that included 3 lncRNAs, 19 miRNAs, and 29 mRNAs with a bioinformatics prediction. Through RT-qPCR and further functional verification, 2 Tgf-ß-mediated ceRNA axes (Gm20559-miR-361-5p-Oas2/Gbp7) were further identified. Gm20559 knockout or miR-361-5p mimics markedly impaired DNA repair and cell viability in UV-irradiated 661W cells, which confirms the bioinformatics results. In summary, this study revealed that Tgf-ß could reduce DNA damage in 661W cells, provided a Tgf-ß-associated ceRNA network for DNA damage and repair, and suggested that the molecular signatures may be useful candidates as targets of treatment for photoreceptor pathology.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: MicroARNs / ARN Largo no Codificante Tipo de estudio: Prognostic_studies Idioma: En Revista: Genes (Basel) Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: MicroARNs / ARN Largo no Codificante Tipo de estudio: Prognostic_studies Idioma: En Revista: Genes (Basel) Año: 2022 Tipo del documento: Article País de afiliación: China
...