PSRTTCA: A new approach for improving the prediction and characterization of tumor T cell antigens using propensity score representation learning.
Comput Biol Med
; 152: 106368, 2023 01.
Article
en En
| MEDLINE
| ID: mdl-36481763
Despite the arsenal of existing cancer therapies, the ongoing recurrence and new cases of cancer pose a serious health concern that necessitates the development of new and effective treatments. Cancer immunotherapy, which uses the body's immune system to combat cancer, is a promising treatment option. As a result, in silico methods for identifying and characterizing tumor T cell antigens (TTCAs) would be useful for better understanding their functional mechanisms. Although few computational methods for TTCA identification have been developed, their lack of model interpretability is a major drawback. Thus, developing computational methods for the effective identification and characterization of TTCAs is a critical endeavor. PSRTTCA, a new machine learning (ML)-based approach for improving the identification and characterization of TTCAs based on their primary sequences, is proposed in this study. Specifically, we introduce a new propensity score representation learning algorithm that allows one to generate various sets of propensity scores of amino acids, dipeptides, and g-gap dipeptides to be TTCAs. To enhance the predictive performance, optimal sets of variant propensity scores were determined and fed into the final meta-predictor (PSRTTCA). Benchmarking results revealed that PSRTTCA was a more precise and promising tool for the identification and characterization of TTCAs than conventional ML classifiers and existing methods. Furthermore, PSR-derived propensities of amino acids in becoming TTCAs are used to reveal the relationship between TTCAs and their informative physicochemical properties in order to provide insights into TTCA characteristics. Finally, a user-friendly online computational platform of PSRTTCA is publicly available at http://pmlabstack.pythonanywhere.com/PSRTTCA. The PSRTTCA predictor is anticipated to facilitate community-wide efforts in accelerating the discovery of novel TTCAs for cancer immunotherapy and other clinical applications.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Aminoácidos
/
Neoplasias
Tipo de estudio:
Prognostic_studies
/
Risk_factors_studies
Límite:
Humans
Idioma:
En
Revista:
Comput Biol Med
Año:
2023
Tipo del documento:
Article
País de afiliación:
Tailandia