Interpretable classification of pathology whole-slide images using attention based context-aware graph convolutional neural network.
Comput Methods Programs Biomed
; 229: 107268, 2023 Feb.
Article
en En
| MEDLINE
| ID: mdl-36495811
BACKGROUND AND OBJECTIVE: Whole slide image (WSI) classification and lesion localization within giga-pixel slide are challenging tasks in computational pathology that requires context-aware representations of histological features to adequately infer nidus. The existing weakly supervised learning methods mainly treat different locations in the slide as independent regions and cannot learn potential nonlinear interactions between instances based on i.i.d assumption, resulting in the model unable to effectively utilize context-ware information to predict the labels of WSIs and locate the region of interest (ROI). METHODS: Here, we propose an interpretable classification model named bidirectional Attention-based Multiple Instance Learning Graph Convolutional Network (ABMIL-GCN), which hierarchically aggregates context-aware features of instances into a global representation in a topology fashion to predict the slide labels and localize the region of lymph node metastasis in WSIs. RESULTS: We verified the superiority of this method on the Camelyon16 dataset, and the results show that the average predicted ACC and AUC of the proposed model after flooding optimization can reach 90.89% and 0.9149, respectively. The average accuracy and ACC score are improved by more than 7% and 4% compared with the existing state-of-the-art algorithms. CONCLUSIONS: The results demonstrate that context-aware GCN outperforms existing weakly supervised learning methods by introducing spatial correlations between the neighbor image patches, which also addresses the 'accuracy-interpretability trade-off' problem. The framework provides a novel paradigm for the clinical application of computer-aided diagnosis and intelligent systems.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Algoritmos
/
Redes Neurales de la Computación
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Comput Methods Programs Biomed
Asunto de la revista:
INFORMATICA MEDICA
Año:
2023
Tipo del documento:
Article