Your browser doesn't support javascript.
loading
Scalable Paper Supercapacitors for Printed Wearable Electronics.
Say, Mehmet Girayhan; Brett, Calvin J; Edberg, Jesper; Roth, Stephan V; Söderberg, L Daniel; Engquist, Isak; Berggren, Magnus.
Afiliación
  • Say MG; Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74Norrköping, Sweden.
  • Brett CJ; Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44Stockholm, Sweden.
  • Edberg J; Department of Engineering Mechanics, KTH Royal Institute of Technology, Osquars Backe 18, 100 44Stockholm, Sweden.
  • Roth SV; Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607Hamburg, Germany.
  • Söderberg LD; RISE Research Institutes of Sweden, Bio- and Organic Electronics, Bredgatan 35, SE-602 21Norrköping, Sweden.
  • Engquist I; Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607Hamburg, Germany.
  • Berggren M; Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44Stockholm, Sweden.
ACS Appl Mater Interfaces ; 14(50): 55850-55863, 2022 Dec 21.
Article en En | MEDLINE | ID: mdl-36508553
ABSTRACT
Printed paper-based electronics offers solutions to rising energy concerns by supplying flexible, environmentally friendly, low-cost infrastructure for portable and wearable electronics. Herein, we demonstrate a scalable spray-coating approach to fabricate tailored paper poly(3,4-ethylenedioxythiophene)poly(styrene sulfonate) (PEDOTPSS)/cellulose nanofibril (CNF) electrodes for all-printed supercapacitors. Layer-by-layer spray deposition was used to achieve high-quality electrodes with optimized electrode thickness. The morphology of these electrodes was analyzed using advanced X-ray scattering methods, revealing that spray-coated electrodes have smaller agglomerations, resulting in a homogeneous film, ultimately suggesting a better electrode manufacturing method than drop-casting. The printed paper-based supercapacitors exhibit an areal capacitance of 9.1 mF/cm2, which provides enough energy to power electrochromic indicators. The measured equivalent series resistance (ESR) is as low as 0.3 Ω, due to improved contact and homogeneous electrodes. In addition, a demonstrator in the form of a self-powered wearable wristband is shown, where a large-area (90 cm2) supercapacitor is integrated with a flexible solar cell and charged by ambient indoor light. This demonstration shows the tremendous potential for sequential coating/printing methods in the scaling up of printed wearables and self-sustaining systems.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: Suecia
...