Your browser doesn't support javascript.
loading
Stable isotope tracing in vivo reveals a metabolic bridge linking the microbiota to host histone acetylation.
Lund, Peder J; Gates, Leah A; Leboeuf, Marylene; Smith, Sarah A; Chau, Lillian; Lopes, Mariana; Friedman, Elliot S; Saiman, Yedidya; Kim, Min Soo; Shoffler, Clarissa A; Petucci, Christopher; Allis, C David; Wu, Gary D; Garcia, Benjamin A.
Afiliación
  • Lund PJ; Department of Biochemistry and Biophysics, Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Gates LA; Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA.
  • Leboeuf M; Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA.
  • Smith SA; Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Chau L; Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Lopes M; Department of Biochemistry and Biophysics, Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Friedman ES; Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Saiman Y; Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Kim MS; Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Shoffler CA; Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Petucci C; Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Allis CD; Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA.
  • Wu GD; Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Garcia BA; Department of Biochemistry and Biophysics, Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address: bagarcia@wustl.edu.
Cell Rep ; 41(11): 111809, 2022 12 13.
Article en En | MEDLINE | ID: mdl-36516747
ABSTRACT
The gut microbiota influences acetylation on host histones by fermenting dietary fiber into butyrate. Although butyrate could promote histone acetylation by inhibiting histone deacetylases, it may also undergo oxidation to acetyl-coenzyme A (CoA), a necessary cofactor for histone acetyltransferases. Here, we find that epithelial cells from germ-free mice harbor a loss of histone H4 acetylation across the genome except at promoter regions. Using stable isotope tracing in vivo with 13C-labeled fiber, we demonstrate that the microbiota supplies carbon for histone acetylation. Subsequent metabolomic profiling revealed hundreds of labeled molecules and supported a microbial contribution to host fatty acid metabolism, which declined in response to colitis and correlated with reduced expression of genes involved in fatty acid oxidation. These results illuminate the flow of carbon from the diet to the host via the microbiota, disruptions to which may affect energy homeostasis in the distal gut and contribute to the development of colitis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Colitis / Microbiota Límite: Animals Idioma: En Revista: Cell Rep Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Colitis / Microbiota Límite: Animals Idioma: En Revista: Cell Rep Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos
...