Your browser doesn't support javascript.
loading
Facile Synthesis of a LiC15H7O4/Graphene Nanocomposite as a High-Property Organic Cathode for Lithium-Ion Batteries.
Yang, Xiaoyun; Deng, Huan; Liang, Junfeng; Liang, Jiaying; Zeng, Ronghua; Zhao, Ruirui; Chen, Qing; Chen, Mingzhe; Luo, Yifan; Chou, Shulei.
Afiliación
  • Yang X; School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Laboratory of ETESPG (GHEI), South China Normal University, Guangzhou, Guangdong 510006, China.
  • Deng H; School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Laboratory of ETESPG (GHEI), South China Normal University, Guangzhou, Guangdong 510006, China.
  • Liang J; School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Laboratory of ETESPG (GHEI), South China Normal University, Guangzhou, Guangdong 510006, China.
  • Liang J; School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Laboratory of ETESPG (GHEI), South China Normal University, Guangzhou, Guangdong 510006, China.
  • Zeng R; School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Laboratory of ETESPG (GHEI), South China Normal University, Guangzhou, Guangdong 510006, China.
  • Zhao R; School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Laboratory of ETESPG (GHEI), South China Normal University, Guangzhou, Guangdong 510006, China.
  • Chen Q; Department of Mechanical and Aerospace Engineering and Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong 999077, China.
  • Chen M; School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, China.
  • Luo Y; School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Laboratory of ETESPG (GHEI), South China Normal University, Guangzhou, Guangdong 510006, China.
  • Chou S; Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
ACS Appl Mater Interfaces ; 14(51): 56808-56816, 2022 Dec 28.
Article en En | MEDLINE | ID: mdl-36516879
ABSTRACT
Organic electrode materials face two outstanding issues in the practical applications in lithium-ion batteries (LIBs), dissolution and poor electronic conductivity. Herein, we fabricate a nanocomposite of an anthraquinone carboxylate lithium salt (LiAQC) and graphene to address the two issues. LiAQC is synthesized via a green and facile one-pot reaction and then ball-milled with graphene to obtain a nanocomposite (nr-LiAQC/G). For comparison, single LiAQC is also ball-milled to form a nanorod (nr-LiAQC). Together with pristine LiAQC, the three samples are used as cathodes for LIBs. Results show that good cycling performance can be obtained by introducing the -CO2Li hydrophilic group on anthraquinone. Furthermore, the nr-LiAQC/G demonstrates not only a high initial discharge capacity of 187 mAh g-1 at 0.1 C but also good cycling stability (reversible capacity ∼165 mAh g-1 at 0.1 C after 200 cycles) and good rate capability (the average discharge capacity of 149 mAh g-1 at 2 C). The superior electrochemical properties of the nr-LiAQC/G profit from graphene with high electronic conductivity, the nanorod structure of LiAQC shortening the transport distance for lithium ions and electrons, and the introduction of the -CO2Li hydrophilic group decreasing the dissolution of LiAQC in the electrolyte. Meanwhile, density functional theory calculations support the roles of graphene and -CO2Li groups. The fabrication is general and facile, ready to be extended to other organic electrode materials.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: China
...