Your browser doesn't support javascript.
loading
Predictive modeling using shape statistics for interpretable and robust quality assurance of automated contours in radiation treatment planning.
Wooten, Zachary T; Yu, Cenji; Court, Laurence E; Peterson, Christine B.
Afiliación
  • Wooten ZT; Department of Statistics, Rice University, 6100 Main St., Houston, TX 77005, USA, ztw5@rice.edu.
Pac Symp Biocomput ; 28: 395-406, 2023.
Article en En | MEDLINE | ID: mdl-36540994
Deep learning methods for image segmentation and contouring are gaining prominence as an automated approach for delineating anatomical structures in medical images during radiation treatment planning. These contours are used to guide radiotherapy treatment planning, so it is important that contouring errors are flagged before they are used for planning. This creates a need for effective quality assurance methods to enable the clinical use of automated contours in radiotherapy. We propose a novel method for contour quality assurance that requires only shape features, making it independent of the platform used to obtain the images. Our method uses a random forest classifier to identify low-quality contours. On a dataset of 312 kidney contours, our method achieved a cross-validated area under the curve of 0.937 in identifying unacceptable contours. We applied our method to an unlabeled validation dataset of 36 kidney contours. We flagged 6 contours which were then reviewed by a cervix contour specialist, who found that 4 of the 6 contours contained errors. We used Shapley values to characterize the specific shape features that contributed to each contour being flagged, providing a starting point for characterizing the source of the contouring error. These promising results suggest our method is feasible for quality assurance of automated radiotherapy contours.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Planificación de la Radioterapia Asistida por Computador / Biología Computacional Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Female / Humans Idioma: En Revista: Pac Symp Biocomput Asunto de la revista: BIOTECNOLOGIA / INFORMATICA MEDICA Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Planificación de la Radioterapia Asistida por Computador / Biología Computacional Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Female / Humans Idioma: En Revista: Pac Symp Biocomput Asunto de la revista: BIOTECNOLOGIA / INFORMATICA MEDICA Año: 2023 Tipo del documento: Article
...