Your browser doesn't support javascript.
loading
Deconstructing body axis morphogenesis in zebrafish embryos using robot-assisted tissue micromanipulation.
Özelçi, Ece; Mailand, Erik; Rüegg, Matthias; Oates, Andrew C; Sakar, Mahmut Selman.
Afiliación
  • Özelçi E; Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
  • Mailand E; Institute of Bioengineering, EPFL, 1015, Lausanne, Switzerland.
  • Rüegg M; Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
  • Oates AC; Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
  • Sakar MS; Institute of Bioengineering, EPFL, 1015, Lausanne, Switzerland. andrew.oates@epfl.ch.
Nat Commun ; 13(1): 7934, 2022 12 24.
Article en En | MEDLINE | ID: mdl-36566327
ABSTRACT
Classic microsurgical techniques, such as those used in the early 1900s by Mangold and Spemann, have been instrumental in advancing our understanding of embryonic development. However, these techniques are highly specialized, leading to issues of inter-operator variability. Here we introduce a user-friendly robotic microsurgery platform that allows precise mechanical manipulation of soft tissues in zebrafish embryos. Using our platform, we reproducibly targeted precise regions of tail explants, and quantified the response in real-time by following notochord and presomitic mesoderm (PSM) morphogenesis and segmentation clock dynamics during vertebrate anteroposterior axis elongation. We find an extension force generated through the posterior notochord that is strong enough to buckle the structure. Our data suggest that this force generates a unidirectional notochord extension towards the tailbud because PSM tissue around the posterior notochord does not let it slide anteriorly. These results complement existing biomechanical models of axis elongation, revealing a critical coupling between the posterior notochord, the tailbud, and the PSM, and show that somite patterning is robust against structural perturbations.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Robótica / Pez Cebra Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Robótica / Pez Cebra Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: Suiza
...