Your browser doesn't support javascript.
loading
Experimental evidence of a limited impact of new-generation perfluoroalkyl substance C6O4 on differentiating human dopaminergic neurons from induced pluripotent stem cells.
Di Nisio, Andrea; Trevisan, Marta; Dall'Acqua, Stefano; Pannella, Micaela; Pappalardo, Claudia; Ferlin, Alberto; Foresta, Carlo; De Toni, Luca.
Afiliación
  • Di Nisio A; Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy.
  • Trevisan M; Department of Molecular Medicine, University of Padova, Padova, Italy.
  • Dall'Acqua S; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
  • Pannella M; IRCSS Istituto Ortopedico Rizzoli, Bologna, Italy.
  • Pappalardo C; Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy.
  • Ferlin A; Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy.
  • Foresta C; Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy.
  • De Toni L; Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy.
Toxicol Rep ; 10: 40-44, 2023.
Article en En | MEDLINE | ID: mdl-36578672
Perfluoroalkyl substances (PFASs) are persistent pollutants, raising concerns for human health. Legacy PFAS perfluoro-octanoic acid (PFOA) accumulate in brains of people at high environmental exposure, especially in areas enriched with dopaminergic neurons (DN). In vitro exposure to 10 ng/mL PFOA for 24 h was also associated with an altered molecular and functional phenotype of DN differentiated from human induced pluripotent stem cells (hiPSCs). Acetic acid, 2,2-difluoro-2-((2,2,4,5-tetrafluoro-5(trifluoromethoxy)- 1,3-dioxolan-4-yl)oxy)-ammonium salt (1:1), known as C6O4, is a new generation PFAS proposed to have a safer profile. Here we investigated the effect of C6O4 exposure on the molecular phenotype of hiPSC-derived DN. Cells were exposed to C6O4 for 24 h, at the concentration of 10 ng/mL, at neuronal commitment (DP1), neuronal precursor (DP2) and the mature dopaminergic (DP3) phases of differentiation. Liquid-chromatography/mass-spectrometry showed negligible cell accumulation of C6O4 at each differentiation stage and by staining with Merocyanine-540 we observed unaltered cell membrane fluidity. Immunofluorescence showed that the expression of tyrosine hydroxylase (TH) and ßIII-Tubulin was unaffected by the exposure to C6O4 at each differentiation phase (respectively: DP1, p = 0.332; DP2, p = 0.623; DP3, p = 0.816, with respect to control unexposed conditions). Exposure to C6O4 is presumed to have minor effects on cell molecular/functional phenotype of developing human DN cells, requiring confirm on in vivo models.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Toxicol Rep Año: 2023 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Toxicol Rep Año: 2023 Tipo del documento: Article País de afiliación: Italia
...