Your browser doesn't support javascript.
loading
Dynamic sensitivity analysis: Defining personalised strategies to drive brain state transitions via whole brain modelling.
Vohryzek, Jakub; Cabral, Joana; Castaldo, Francesca; Sanz-Perl, Yonatan; Lord, Louis-David; Fernandes, Henrique M; Litvak, Vladimir; Kringelbach, Morten L; Deco, Gustavo.
Afiliación
  • Vohryzek J; Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
  • Cabral J; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK.
  • Castaldo F; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK.
  • Sanz-Perl Y; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
  • Lord LD; Wellcome Centre for Human Neuroimaging, University College London, Queen Square Institute of Neurology, London, UK.
  • Fernandes HM; Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
  • Litvak V; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
  • Kringelbach ML; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK.
  • Deco G; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK.
Comput Struct Biotechnol J ; 21: 335-345, 2023.
Article en En | MEDLINE | ID: mdl-36582443
Traditionally, in neuroimaging, model-free analyses are used to find significant differences between brain states via signal detection theory. Depending on the a priori assumptions about the underlying data, different spatio-temporal features can be analysed. Alternatively, model-based techniques infer features from the data and compare significance from model parameters. However, to assess transitions from one brain state to another remains a challenge in current paradigms. Here, we introduce a "Dynamic Sensitivity Analysis" framework that quantifies transitions between brain states in terms of stimulation ability to rebalance spatio-temporal brain activity towards a target state such as healthy brain dynamics. In practice, it means building a whole-brain model fitted to the spatio-temporal description of brain dynamics, and applying systematic stimulations in-silico to assess the optimal strategy to drive brain dynamics towards a target state. Further, we show how Dynamic Sensitivity Analysis extends to various brain stimulation paradigms, ultimately contributing to improving the efficacy of personalised clinical interventions.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Comput Struct Biotechnol J Año: 2023 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Comput Struct Biotechnol J Año: 2023 Tipo del documento: Article País de afiliación: España
...