Your browser doesn't support javascript.
loading
Life cycle assessment for the production of MSWI fly-ash based porous glass-ceramics: Scenarios based on the contribution of silica sources, methane aided, and energy recoveries.
Barracco, Francesco; Demichelis, Francesca; Sharifikolouei, Elham; Ferraris, Monica; Fino, Debora; Tommasi, Tonia.
Afiliación
  • Barracco F; Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, TO, Italy.
  • Demichelis F; Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, TO, Italy.
  • Sharifikolouei E; Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, TO, Italy.
  • Ferraris M; Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, TO, Italy.
  • Fino D; Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, TO, Italy.
  • Tommasi T; Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, TO, Italy. Electronic address: tonia.tommasi@polito.it.
Waste Manag ; 157: 301-311, 2023 Feb 15.
Article en En | MEDLINE | ID: mdl-36584494
Municipal solid waste (MSW) production in the world has increased by 60 % in recent years. Incineration of MSW reduces their volume in conjunction with energy recovery. Incineration produces two residues, namely bottom ash (BA) and fly ash (FA), with high concentration of heavy metals and organic pollutants, especially for FA, making them an environmental concern. Vitrification is a costly, highly safe high temperature treatment, ensuring encapsulation of heavy metals. FA vitrification requires a source of silica to be able to get vitrified. In this study, we have proposed valorizing treated (vitrified) FA through the production of porous glass-ceramics, subsequently to MSWI. The entire process, from incineration to glass-ceramics production, was evaluated for several scenarios by Life Cycle Assessment (LCA) using Sima Pro 9.0. Three main scenarios were analysed; each one considering a different silica source: bottom ash (BA), glass cullet (G) and silica sand (S), and for each scenario, three thermal recovery subscenarios were assumed: no thermal recovery used to heat FA prior to vitrification (N), heating FA prior to vitrification using incineration gases thermal recovery (T) and methane-combustion-aided thermal recovery, which exploits methane combustion to further increase the gases temperature (M). Results proved that vitrification was a technically feasible and environmentally-energetically sustainable technology. The result indicates that the most eco-sustainable scenario was using bottom ashes as a silica source together with methane-combustion-aided recovery: 0.467 kgCO2,eq, 5.83 × 10-8 carcinogenic-CTUh and 9.26 MJ required per kg of glass-ceramics produced.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_quimicos_contaminacion Asunto principal: Eliminación de Residuos / Metales Pesados Límite: Animals Idioma: En Revista: Waste Manag Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_quimicos_contaminacion Asunto principal: Eliminación de Residuos / Metales Pesados Límite: Animals Idioma: En Revista: Waste Manag Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Italia
...