Electrical-gate-controlled giant tunneling magnetoresistance and its quasi-periodic oscillation in an interlaced magnetic-electric silicene superlattice.
Nanoscale
; 15(4): 1860-1868, 2023 Jan 27.
Article
en En
| MEDLINE
| ID: mdl-36602176
In this work, we propose a silicene-based lateral resonant tunneling device by placing silicene under the superlattices interlaced, arranged by ferromagnetic gates and electric gates. Its ballistic transport properties are calculated by the transfer matrix method. Combined with the unique electrically tuned energy gap of silicene, its magnetoresistance (MR) can be exaggeratedly modulated over a wide range by applying electrostatic potential and the on-site potential difference. It is interestingly found that there is a quasi-periodic oscillation of the MR in silicene-based superlattice devices from the quantum resonant confinement of the band splitting by the electrostatic field. Moreover, the peak of the MR in a single-period structure can reach more than 104, while the peak of the MR in an interlaced alternating magnetic-electric silicene superlattice can reach more than 1017, which is one of the best-reported values. This may originate from the enhancement effect of the wave vector filtering by the controlled field. Our studies indicate that the silicene superlattices alternately arranged by the ferromagnetic gate and electric gate not only have giant MR (GMR) properties, but also exhibit the periodic oscillation characteristics of MR in which electric gates can be modulated. Therefore, this work provides a more flexible strategy for the construction of silicene-based nanoelectronic devices.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Nanoscale
Año:
2023
Tipo del documento:
Article
País de afiliación:
China