A review of research on eligibility criteria for clinical trials.
Clin Exp Med
; 23(6): 1867-1879, 2023 Oct.
Article
en En
| MEDLINE
| ID: mdl-36602707
The purpose of this paper is to systematically sort out and analyze the cutting-edge research on the eligibility criteria of clinical trials. Eligibility criteria are important prerequisites for the success of clinical trials. It directly affects the final results of the clinical trials. Inappropriate eligibility criteria will lead to insufficient recruitment, which is an important reason for the eventual failure of many clinical trials. We have investigated the research status of eligibility criteria for clinical trials on academic platforms such as arXiv and NIH. We have classified and sorted out all the papers we found, so that readers can understand the frontier research in this field. Eligibility criteria are the most important part of a clinical trial study. The ultimate goal of research in this field is to formulate more scientific and reasonable eligibility criteria and speed up the clinical trial process. The global research on the eligibility criteria of clinical trials is mainly divided into four main aspects: natural language processing, patient pre-screening, standard evaluation, and clinical trial query. Compared with the past, people are now using new technologies to study eligibility criteria from a new perspective (big data). In the research process, complex disease concepts, how to choose a suitable dataset, how to prove the validity and scientific of the research results, are challenges faced by researchers (especially for computer-related researchers). Future research will focus on the selection and improvement of artificial intelligence algorithms related to clinical trials and related practical applications such as databases, knowledge graphs, and dictionaries.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Proyectos de Investigación
/
Inteligencia Artificial
Límite:
Humans
Idioma:
En
Revista:
Clin Exp Med
Asunto de la revista:
MEDICINA
Año:
2023
Tipo del documento:
Article
País de afiliación:
China