Your browser doesn't support javascript.
loading
Two-Dimensional Nitrogen-Doped Carbon Nanosheets Derived from g-C3N4 /ZIF-8 for Solid-Phase Microextraction in Exhalation of Esophageal Cancer Patients.
Hao, Qi-Long; Yu, Li-Qing; Yang, Xiao-Qin; Xu, Rui-Ting; Lv, Yun-Kai.
Afiliación
  • Hao QL; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
  • Yu LQ; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
  • Yang XQ; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
  • Xu RT; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
  • Lv YK; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
ACS Appl Mater Interfaces ; 15(4): 5990-5997, 2023 Feb 01.
Article en En | MEDLINE | ID: mdl-36689469
Here, two-dimensional (2D) nitrogen-doped carbon nanosheets (CNSs) were prepared through carbonizing MOFs (ZIF-8) in-situ grown using graphitic carbon nitride (g-C3N4) as a template. The developed ZIF-8 CNS was then used as solid-phase microextraction (SPME) fiber coating for beneficiation of five biomarkers in exhalation of patients with esophageal cancer and in gas chromatography-mass spectrometry (GC-MS) for determination. The ZIF-8 CNS fiber exhibits satisfactory enrichment factors (3490-5631), wide linearity (5-1000 µg L-1), and low detection limits (0.26-0.96 µg L-1). The relative standard deviations (RSDs) for six replicate extractions of the same ZIF-8 CNS fiber were between 2.0-3.9% (intra-day) and 2.8-5.2% (inter-day). The reproducibility of three fibers prepared by the same approach was in the range 6.8-12.3% (RSD). The developed ZIF-8 CNS fiber can persist in 120 SPME cycles with no prominent loss of extraction efficiency and precision. The high enrichment factors of the 2D ZIF-8 CNS coatings are attributed to the high specific surface area, ultrathin thickness, and nano-pore or interlayer channels; moreover, nitrogen doping also endows the π system with a strong electron absorption ability, which will enhance the π-π interaction between the ZIF-8 CNS and the aromatic ring. Ultimately, the self-made ZIF-8 CNS-coated SPME fiber was applied to the analysis of exhaled breath samples. The recoveries of spiked analytes are between 84 and 105%.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Esofágicas / Carbono Límite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Esofágicas / Carbono Límite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: China
...