Your browser doesn't support javascript.
loading
Big data technology in infectious diseases modeling, simulation, and prediction after the COVID-19 outbreak.
Shi, Honghao; Wang, Jingyuan; Cheng, Jiawei; Qi, Xiaopeng; Ji, Hanran; Struchiner, Claudio J; Villela, Daniel Am; Karamov, Eduard V; Turgiev, Ali S.
Afiliación
  • Shi H; School of Computer Science and Engineering, Beihang University, Beijing 100191, China.
  • Wang J; School of Computer Science and Engineering, Beihang University, Beijing 100191, China.
  • Cheng J; School of Computer Science and Engineering, Beihang University, Beijing 100191, China.
  • Qi X; Center for Global Public Health, Chinese Center for Disease Control and Prevention, Beijing 102211, China.
  • Ji H; Center for Global Public Health, Chinese Center for Disease Control and Prevention, Beijing 102211, China.
  • Struchiner CJ; Fundação Getúlio Vargas, Rio de Janeiro, Brazil.
  • Villela DA; Instituto de Medicina Social Hesio Cordeiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.
  • Karamov EV; Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
  • Turgiev AS; Gamaleya National Research Center for Epidemiology and Microbiology of the Russian Ministry of Health, Russia.
Intell Med ; 3(2): 85-96, 2023 May.
Article en En | MEDLINE | ID: mdl-36694623
After the outbreak of COVID-19, the interaction of infectious disease systems and social systems has challenged traditional infectious disease modeling methods. Starting from the research purpose and data, researchers improved the structure and data of the compartment model or used agents and artificial intelligence based models to solve epidemiological problems. In terms of modeling methods, the researchers use compartment subdivision, dynamic parameters, agent-based model methods, and artificial intelligence related methods. In terms of factors studied, the researchers studied 6 categories: human mobility, nonpharmaceutical interventions (NPIs), ages, medical resources, human response, and vaccine. The researchers completed the study of factors through modeling methods to quantitatively analyze the impact of social systems and put forward their suggestions for the future transmission status of infectious diseases and prevention and control strategies. This review started with a research structure of research purpose, factor, data, model, and conclusion. Focusing on the post-COVID-19 infectious disease prediction simulation research, this study summarized various improvement methods and analyzes matching improvements for various specific research purposes.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_enfermedades_transmissibles Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Intell Med Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_enfermedades_transmissibles Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Intell Med Año: 2023 Tipo del documento: Article País de afiliación: China
...