Your browser doesn't support javascript.
loading
Role of NADPH Oxidases in Renal Aging.
Yoon, Sung Gi; Ghee, Jung Yeon; Yoo, Ji Ae; Park, Boo Yeun; Cha, Jin Joo; Kang, Young Sun; Han, Sang Youb; Min, Hye Sook; Lee, Ji Eun; Han, Jee Young; Cha, Dae Ryong.
Afiliación
  • Yoon SG; Department of Internal Medicine, Division of Nephrology, Korea University, Ansan, Republic of Korea.
  • Ghee JY; Department of Internal Medicine, Division of Nephrology, Korea University, Ansan, Republic of Korea.
  • Yoo JA; Department of Internal Medicine, Division of Nephrology, Korea University, Ansan, Republic of Korea.
  • Park BY; Department of Internal Medicine, Division of Nephrology, Korea University, Ansan, Republic of Korea.
  • Cha JJ; Department of Internal Medicine, Division of Nephrology, Korea University, Ansan, Republic of Korea.
  • Kang YS; Department of Internal Medicine, Division of Nephrology, Korea University, Ansan, Republic of Korea.
  • Han SY; Department of Internal Medicine, Inje University, Ilsan-Paik Hospital, Goyang, Republic of Korea.
  • Min HS; Department of Internal Medicine, Division of Nephrology, Wonkwang University, Gunpo, Republic of Korea.
  • Lee JE; Department of Internal Medicine, Division of Nephrology, Wonkwang University, Gunpo, Republic of Korea.
  • Han JY; Department of Pathology, Inha University, Incheon, Republic of Korea.
  • Cha DR; Department of Internal Medicine, Division of Nephrology, Korea University, Ansan, Republic of Korea.
Gerontology ; 69(7): 852-865, 2023.
Article en En | MEDLINE | ID: mdl-36709751
ABSTRACT

INTRODUCTION:

Aging of the kidney is associated with complex molecular, histological, and functional changes. Although the aging process itself does not induce renal damage, underlying disease such as diabetes mellitus can aggravate kidney injury during aging. Although oxidative stress is considered an important mediator in age-related renal fibrosis, it is unclear how oxidative stress increases during normal and diabetic aging.

METHODS:

In this study, we investigated molecular changes in the kidney in normal and diabetic aging mice. C57BL/6 mice were studied at 2, 12, and 24 months of age, and leptin receptor-deficient db/db mice were studied at 8, 12, 16, 20, 24, and 38 weeks of age. We measured renal functional parameters, fibrotic and inflammatory markers, and oxidative stress markers at all the above time points.

RESULTS:

Both nondiabetic and diabetic mice exhibited progressive microalbuminuria during their lifespan. Interestingly, both diabetic aging and normal aging mice showed progressive increases in oxidative stress markers such as plasma and urinary 8-isoprostane, as well as renal lipid hydroperoxide content. In renal tissues, proinflammatory and profibrotic molecules were significantly upregulated in an age-dependent manner. Expression of three NADPH oxidase (Nox) isoforms, namely, Nox1, Nox2, and Nox4, was significantly increased during aging. Compared with normal aging mice, diabetic db/db mice demonstrated more dramatic changes during aging process.

CONCLUSIONS:

Our findings suggest that NADPH oxidases play an important role in the aging kidney under both normal and diabetic conditions. Targeting of these oxidases might be a new promising therapy to treat issues associated with aging kidneys.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: NADPH Oxidasas / Diabetes Mellitus Experimental Límite: Animals Idioma: En Revista: Gerontology Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: NADPH Oxidasas / Diabetes Mellitus Experimental Límite: Animals Idioma: En Revista: Gerontology Año: 2023 Tipo del documento: Article
...