Your browser doesn't support javascript.
loading
RBM43 links adipose inflammation and energy expenditure through translational regulation of PGC1α.
bioRxiv ; 2023 Jan 07.
Article en En | MEDLINE | ID: mdl-36712038
ABSTRACT
Adipose thermogenesis involves specialized mitochondrial function that counteracts metabolic disease through dissipation of chemical energy as heat. However, inflammation present in obese adipose tissue can impair oxidative metabolism. Here, we show that PGC1α, a key governor of mitochondrial biogenesis and thermogenesis, is negatively regulated at the level of mRNA translation by the little-known RNA-binding protein RBM43. Rbm43 is expressed selectively in white adipose depots that have low thermogenic potential, and is induced by inflammatory cytokines. RBM43 suppresses mitochondrial and thermogenic gene expression in a PGC1α-dependent manner and its loss protects cells from cytokine-induced mitochondrial impairment. In mice, adipocyte-selective Rbm43 disruption increases PGC1α translation, resulting in mitochondrial biogenesis and adipose thermogenesis. These changes are accompanied by improvements in glucose homeostasis during diet-induced obesity that are independent of body weight. The action of RBM43 suggests a translational mechanism by which inflammatory signals associated with metabolic disease dampen mitochondrial function and thermogenesis.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Health_economic_evaluation Idioma: En Revista: BioRxiv Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Health_economic_evaluation Idioma: En Revista: BioRxiv Año: 2023 Tipo del documento: Article
...