Your browser doesn't support javascript.
loading
Increasing the Hydrophilicity of Cyclic Ketene Acetals Improves the Hydrolytic Degradation of Vinyl Copolymers and the Interaction of Glycopolymer Nanoparticles with Lectins.
Pesenti, Théo; Gillon, Emilie; Ishii, Seika; Messaoudi, Samir; Guillaneuf, Yohann; Imberty, Anne; Nicolas, Julien.
Afiliación
  • Pesenti T; Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France.
  • Gillon E; Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France.
  • Ishii S; Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France.
  • Messaoudi S; Université Paris-Saclay, CNRS, BioCIS, 91400 Orsay, France.
  • Guillaneuf Y; Aix-Marseille-Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, 13397 Marseille, France.
  • Imberty A; Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France.
  • Nicolas J; Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France.
Biomacromolecules ; 24(2): 991-1002, 2023 02 13.
Article en En | MEDLINE | ID: mdl-36724405
Radical ring-opening polymerization (rROP) of cyclic ketene acetals (CKAs) with traditional vinyl monomers allows the synthesis of degradable vinyl copolymers. However, since the most commonly used CKAs are hydrophobic, most degradable vinyl copolymers reported so far degrade very slowly by hydrolysis under physiological conditions (phosphate-buffered saline, pH 7.4, 37 °C), which can be detrimental for biomedical applications. Herein, to design advanced vinyl copolymers by rROP with high CKA content and enhanced degradation profiles, we reported the copolymerization of 2-methylene-1,3,6-trioxocane (MTC) as a CKA with vinyl ether (VE) or maleimide (MI) derivatives. By performing a point-by-point comparison between the MTC/VE and MTC/MI copolymerization systems, and their counterparts based on 2-methylene-1,3-dioxepane (MDO) and 5,6-benzo-2-methylene-1,3-dioxepane (BMDO), we showed negligible impact on the macromolecular characteristics and similar reactivity ratios, suggesting successful substitution of MDO and BMDO by MTC. Interestingly, owing to the hydrophilicity of MTC, the obtained copolymers exhibited a faster hydrolytic degradation under both accelerated and physiological conditions. We then prepared MTC-based glycopolymers, which were formulated into surfactant-free nanoparticles, exhibiting excellent colloidal stability up to 4 months and complete degradation under enzymatic conditions. Importantly, MTC-based glyconanoparticles also showed a similar cytocompatibility toward two healthy cell lines and a much stronger lectin affinity than MDO-based glyconanoparticles.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanopartículas / Acetales Idioma: En Revista: Biomacromolecules Asunto de la revista: BIOLOGIA MOLECULAR Año: 2023 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanopartículas / Acetales Idioma: En Revista: Biomacromolecules Asunto de la revista: BIOLOGIA MOLECULAR Año: 2023 Tipo del documento: Article País de afiliación: Francia
...