Your browser doesn't support javascript.
loading
Hydrogel-Coated Microelectrode Resists Protein Passivation of In Vivo Amperometric Sensors.
Yin, Yongyue; Zeng, Hui; Zhang, Shuai; Gao, Nan; Liu, Rantong; Cheng, Shuwen; Zhang, Meining.
Afiliación
  • Yin Y; Department of Chemistry, Renmin University of China, Beijing 100872, China.
  • Zeng H; Department of Chemistry, Renmin University of China, Beijing 100872, China.
  • Zhang S; Department of Chemistry, Renmin University of China, Beijing 100872, China.
  • Gao N; Department of Chemistry, Renmin University of China, Beijing 100872, China.
  • Liu R; Department of Chemistry, Renmin University of China, Beijing 100872, China.
  • Cheng S; Department of Chemistry, Renmin University of China, Beijing 100872, China.
  • Zhang M; Department of Chemistry, Renmin University of China, Beijing 100872, China.
Anal Chem ; 95(6): 3390-3397, 2023 02 14.
Article en En | MEDLINE | ID: mdl-36725686
Passivation of electrodes caused by nonspecific adsorption of protein can dramatically reduce sensing sensitivity and accuracy, which is a great challenge for in vivo neurochemical monitoring. However, most antipassivation strategies are not suitable to carbon fiber microelectrodes (CFMEs) for in vivo measurement, and these methods also do not work on electrochemical biosensors that fix biometric elements. In this study, we demonstrate that chitosan hydrogel-coated microelectrodes can avoid the current passivation caused by protein adsorption on the surface of carbon fiber because the chitosan hydrogel prepared by local pH gradient caused by hydrogen evolution reaction has three-dimensional networks containing large amounts of water. The highly hydrophilic three-dimensional structure of hydrogel not only forms a biocompatible interface to confine enzymes but also keeps the fast mass transfer of analytes, such as dopamine, ascorbic acid, and glucose. The consistency of the precalibration and postcalibration of the prepared sensor enables in vivo amperometric detection of both electroactive species based on their redox property and electroinactive species based on the enzyme. This study provides a simple and versatile strategy to constitute an amperometric sensor interface to resist passivation of protein adsorption in a complex biological environment such as the brain.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Quitosano Idioma: En Revista: Anal Chem Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Quitosano Idioma: En Revista: Anal Chem Año: 2023 Tipo del documento: Article País de afiliación: China
...