Your browser doesn't support javascript.
loading
Conductive Polyaniline Particles Regulating In Vitro Hydrolytic Degradation and Erosion of Hydroxyapatite/Poly(lactide-co-glycolide) Porous Scaffolds for Bone Tissue Engineering.
Yan, Huanhuan; Wang, Chen; Zhang, Qingxia; Yu, Pengfei; Xiao, Yuwei; Wang, Chunhua; Zhang, Peibiao; Hou, Guige.
Afiliación
  • Yan H; School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai 264003, P. R. China.
  • Wang C; School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai 264003, P. R. China.
  • Zhang Q; School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai 264003, P. R. China.
  • Yu P; School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai 264003, P. R. China.
  • Xiao Y; School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai 264003, P. R. China.
  • Wang C; School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai 264003, P. R. China.
  • Zhang P; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.
  • Hou G; School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai 264003, P. R. China.
ACS Biomater Sci Eng ; 9(3): 1541-1557, 2023 03 13.
Article en En | MEDLINE | ID: mdl-36758235
In addition to biocompatibility and bioactivity, scaffolds with superior bone tissue regenerative capacity should possess excellent functionality (e.g., electroactivity and conductivity) and biodegradability matching with the rate of bone reconstruction. However, current conductive scaffolds display a reduced biodegradability rate and weakened biocompatibility. In this study, injectable conductive porous scaffolds were fabricated, incorporating camphor sulfonic acid-doped polyaniline (PANI) into hydroxyapatite/poly(lactide-co-glycolide) (HA/PLGA) scaffolds, using solvent-casting/particulate-leaching methodology. These scaffolds demonstrated excellent electroactivity, conductivity, hydrophilicity, thermodynamic properties, antibacterial properties, and biocompatibility. Their degradation behavior was explored by regulating the PANI content. The results demonstrated that adding an appropriate content of PANI would increase the pore size, porosity, and water absorption of the conductive scaffold and promote the formation of filamentous fiber byproducts with acidic hydrolysates, which accelerated the degradation rate of the scaffold. Owing to π-π stacking and hydrogen bonding, the conductive scaffold with 10 wt % PANI efficiently retarded the decrease in the thermal and mechanical properties of the scaffolds during a 16 week degradation. Thus, better regulation of degradation behavior and correlation would allow conductive porous scaffolds, such as bone implants, to achieve better bone ingrowth and restoration.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Durapatita / Ingeniería de Tejidos Idioma: En Revista: ACS Biomater Sci Eng Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Durapatita / Ingeniería de Tejidos Idioma: En Revista: ACS Biomater Sci Eng Año: 2023 Tipo del documento: Article
...