Your browser doesn't support javascript.
loading
gutSMASH predicts specialized primary metabolic pathways from the human gut microbiota.
Pascal Andreu, Victòria; Augustijn, Hannah E; Chen, Lianmin; Zhernakova, Alexandra; Fu, Jingyuan; Fischbach, Michael A; Dodd, Dylan; Medema, Marnix H.
Afiliación
  • Pascal Andreu V; Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
  • Augustijn HE; Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
  • Chen L; Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
  • Zhernakova A; Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
  • Fu J; Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
  • Fischbach MA; Changzhou Medical Center, Nanjing Medical University, Changzhou, China.
  • Dodd D; Department of Cardiology, Nanjing Medical University, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
  • Medema MH; Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Nat Biotechnol ; 41(10): 1416-1423, 2023 Oct.
Article en En | MEDLINE | ID: mdl-36782070
The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. Although efforts have been made to identify biosynthetic genes for secondary metabolites, the chemical output of the gut microbiome consists predominantly of primary metabolites. Here we introduce the gutSMASH algorithm for identification of primary metabolic gene clusters, and we used it to systematically profile gut microbiome metabolism, identifying 19,890 gene clusters in 4,240 high-quality microbial genomes. We found marked differences in pathway distribution among phyla, reflecting distinct strategies for energy capture. These data explain taxonomic differences in short-chain fatty acid production and suggest a characteristic metabolic niche for each taxon. Analysis of 1,135 individuals from a Dutch population-based cohort shows that the level of microbiome-derived metabolites in plasma and feces is almost completely uncorrelated with the metagenomic abundance of corresponding metabolic genes, indicating a crucial role for pathway-specific gene regulation and metabolite flux. This work is a starting point for understanding differences in how bacterial taxa contribute to the chemistry of the microbiome.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Microbiota / Microbioma Gastrointestinal Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Nat Biotechnol Asunto de la revista: BIOTECNOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Microbiota / Microbioma Gastrointestinal Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Nat Biotechnol Asunto de la revista: BIOTECNOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Países Bajos
...