Your browser doesn't support javascript.
loading
A novel framework for the removal of pacing artifacts from bio-electrical recordings.
Nagahawatte, Nipuni D; Paskaranandavadivel, Niranchan; Bear, Laura R; Avci, Recep; Cheng, Leo K.
Afiliación
  • Nagahawatte ND; Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
  • Paskaranandavadivel N; Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
  • Bear LR; IHU Liryc, Fondation Bordeaux Université, F-33600, Pessac-Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France; Université de Bordeaux, CRCTB, U1045, F-33000, Bordeaux, France.
  • Avci R; Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
  • Cheng LK; Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; Department of Surgery, Vanderbilt University, Nashville, TN, USA; Riddet Institute Centre of Research Excellence, Palmerston North, New Zealand. Electronic address: l.cheng@auckland.ac.nz.
Comput Biol Med ; 155: 106673, 2023 03.
Article en En | MEDLINE | ID: mdl-36805227
ABSTRACT

BACKGROUND:

Electroceuticals provide clinical solutions for a range of disorders including Parkinson's disease, cardiac arrythmias and are emerging as a potential treatment option for gastrointestinal disorders. However, pre-clinical investigations are challenged by the large stimulation artifacts registered in bio-electrical recordings.

METHOD:

A generalized framework capable of isolating and suppressing stimulation artifacts with minimal intervention was developed. Stimulation artifacts with different pulse-parameters in synthetic and experimental cardiac and gastrointestinal signals were detected using a Hampel filter and reconstructed using 3

methods:

i) autoregression, ii) weighted mean, and iii) linear interpolation.

RESULTS:

Synthetic stimulation artifacts with amplitudes of 2 mV and 4 mV and pulse-widths of 50 ms, 100 ms, and 200 ms were successfully isolated and the artifact window size remained uninfluenced by the pulse-amplitude, but was influenced by pulse-width (e.g., the autoregression method resulted in an identical Root Mean Square Error (RMSE) of 1.64 mV for artifacts with 200 ms pulse-width and both 2 mV and 4 mV amplitudes). The performance of autoregression (RMSE = 1.45 ± 0.16 mV) and linear interpolation (RMSE = 1.22 ± 0.14 mV) methods were comparable and better than weighted mean (RMSE = 5.54 ± 0.56 mV) for synthetic data. However, for experimental recordings, artifact removal by autoregression was superior to both linear interpolation and weighted mean approaches in gastric, small intestinal and cardiac recordings.

CONCLUSIONS:

A novel signal processing framework enabled efficient analysis of bio-electrical recordings with stimulation artifacts. This will allow the bio-electrical events induced by stimulation protocols to be efficiently and systematically evaluated, resulting in improved stimulation therapies.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedad de Parkinson / Artefactos Tipo de estudio: Guideline Límite: Humans Idioma: En Revista: Comput Biol Med Año: 2023 Tipo del documento: Article País de afiliación: Nueva Zelanda

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedad de Parkinson / Artefactos Tipo de estudio: Guideline Límite: Humans Idioma: En Revista: Comput Biol Med Año: 2023 Tipo del documento: Article País de afiliación: Nueva Zelanda
...