Your browser doesn't support javascript.
loading
Nutrient sensing signaling and metabolic responses in shrimp Litopenaeus vannamei under acute ammonia stress.
Sui, Zhongmin; Wei, Chaoqing; Wang, Xuan; Zhou, Huihui; Liu, Chengdong; Mai, Kangsen; He, Gen.
Afiliación
  • Sui Z; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; Key laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, Qingdao 266003, China.
  • Wei C; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; Key laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, Qingdao 266003, China.
  • Wang X; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; Key laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, Qingdao 266003, China.
  • Zhou H; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; Key laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, Qingdao 266003, China.
  • Liu C; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; Key laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, Qingdao 266003, China.
  • Mai K; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; Key laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, Qingdao 266003, China.
  • He G; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; Key laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao
Ecotoxicol Environ Saf ; 253: 114672, 2023 Mar 15.
Article en En | MEDLINE | ID: mdl-36827896
ABSTRACT
Ammonia is the primary environmental factor affecting the growth and health of crustaceans. It would induce oxidative stress and metabolic disorders. Extra amount of energy was demanded to maintain the physiological functions under ammonia stress. However, limited information was available on its effects on the main nutrient metabolism, as well as the nutrient sensing signaling pathways. In the present study, shrimp Litopenaeus vannamei were exposed to acute ammonia stress and injected with amino acid solution. The results showed that acute ammonia exposure resulted in lower free amino acid levels in hemolymph, incomplete activation of the mechanistic target of rapamycin (mTOR) signaling and cascaded less protein synthesis in muscle. It induced autophagy and activated the AMP-activated protein kinase (AMPK) pathway. Meanwhile, ammonia exposure enhanced glycolysis and lipogenesis, but inhibited lipolysis. The results characterized the integrated metabolic responses and nutrient signaling to ammonia stress. It provides critical clues to understand the growth performance and physiological responses in shrimp under ammonia stress.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Penaeidae / Amoníaco Límite: Animals Idioma: En Revista: Ecotoxicol Environ Saf Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Penaeidae / Amoníaco Límite: Animals Idioma: En Revista: Ecotoxicol Environ Saf Año: 2023 Tipo del documento: Article País de afiliación: China
...