Your browser doesn't support javascript.
loading
Towards the Understanding of the Function of Lanthipeptide and TOMM-Related Genes in Haloferax mediterranei.
Costa, Thales; Cassin, Elena; Moreirinha, Catarina; Mendo, Sónia; Caetano, Tânia Sousa.
Afiliación
  • Costa T; CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
  • Cassin E; CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
  • Moreirinha C; CESAM and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
  • Mendo S; CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
  • Caetano TS; CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
Biology (Basel) ; 12(2)2023 Feb 02.
Article en En | MEDLINE | ID: mdl-36829513
ABSTRACT
Research on secondary metabolites produced by Archaea such as ribosomally synthesized and post-translationally modified peptides (RiPPs) is limited. The genome of Haloferax mediterranei ATCC 33500 encodes lanthipeptide synthetases (medM1, medM2, and medM3) and a thiazole-forming cyclodehydratase (ycaO), possibly involved in the biosynthesis of lanthipeptides and the TOMMs haloazolisins, respectively. Lanthipeptides and TOMMs often have antimicrobial activity, and H. mediterranei has antagonistic activity towards haloarchaea shown to be independent of medM genes. This study investigated (i) the transcription of ycaO and medM genes, (ii) the involvement of YcaO in bioactivity, and (iii) the impact of YcaO and MedM-encoding genes' absence in the biomolecular profile of H. mediterranei. The assays were performed with biomass grown in agar and included RT-qPCR, the generation of knockout mutants, bioassays, and FTIR analysis. Results suggest that ycaO and medM genes are transcriptionally active, with the highest number of transcripts observed for medM2. The deletion of ycaO gene had no effect on H. mediterranei antihaloarchaea activity. FTIR analysis of medM and ycaO knockout mutants suggest that MedMs and YcaO activity might be directly or indirectly related t lipids, a novel perspective that deserves further investigation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Biology (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Portugal

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Biology (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Portugal
...