Electrostatic Epitaxy of Orientational Perovskites for Microlasers.
Adv Mater
; 35(19): e2210594, 2023 May.
Article
en En
| MEDLINE
| ID: mdl-36859570
Orientational growth of single-crystalline structures is pivotal in the semiconductor industry, which is achievable by epitaxy for producing thin films, heterostructures, quantum wells, and superlattices. Beyond silicon and III-V semiconductors, solution-processible semiconductors, such as metal-halide perovskites, are emerging for scalable and cost-effective manufacture of optoelectronic devices, whereas the polycrystalline nature of fabricated structures restricts their application toward integrated devices. Here, electrostatic epitaxy, a process sustained by strong electrostatic interactions between self-assembled surfactants (octanoate anions) and Pb2+ , is developed to realize orientational growth of single-crystalline CsPbBr3 microwires. Strong electrostatic interactions localized at the air-liquid interface not only support preferential nucleation for single crystallinity, but also select the crystal facet with the highest Pb2+ areal density for pure crystallographic orientation. Due to the epitaxy at the air-liquid interface, direct growth of oriented single-crystalline microwires onto different substrates without the processes of lift-off and transfer is realized. Photonic lasing emission, waveguide coupling, and on-chip propagation of coherent light are demonstrated based on these single-crystalline microwires. These findings open an avenue for on-chip integration of single-crystalline materials.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Adv Mater
Asunto de la revista:
BIOFISICA
/
QUIMICA
Año:
2023
Tipo del documento:
Article