Your browser doesn't support javascript.
loading
[Echinacoside hampers malignant progression of breast cancer MCF-7 cells by modulating AKR1B10/ERK signal transduction].
Wang, Qian-Ting; Jiang, Yan; Xu, Liang-Hui; Chen, Jia-Li.
Afiliación
  • Wang QT; Pharmacy of Traditional Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University Hangzhou 310006, China.
  • Jiang Y; Pharmacy of Traditional Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University Hangzhou 310006, China.
  • Xu LH; Pharmacy of Traditional Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University Hangzhou 310006, China.
  • Chen JL; Pharmacy of Traditional Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University Hangzhou 310006, China.
Zhongguo Zhong Yao Za Zhi ; 48(3): 744-751, 2023 Feb.
Article en Zh | MEDLINE | ID: mdl-36872238
This study analyzes the impact of echinacoside(ECH) in the proliferation, metastasis and adriamycin(ADR) resistance of breast cancer(BC) MCF-7 cells via the modulation of aldo-keto reductase family 1 member 10(AKR1B10)/extracellular signal-regulated kinase(ERK) pathway. The chemical structure of ECH was firstly confirmed. MCF-7 cells were treated with different concentration(0, 10, 20, 40 µg·mL~(-1)) of ECH for 48 h. Western blot was used to analyze expression of AKR1B10/ERK pathway-associated proteins and cell counting kit-8(CCK-8) assay to determine cell viability. MCF-7 cells were collected and classified into control group, ECH group, ECH + Ov-NC group, and ECH + Ov-AKR1B10 group. Then Western blot was employed to analyze the expression of AKR1B10/ERK pathway-associated proteins. CCK-8 and 5-ethynyl-2'-deoxyuridine(EdU) assay were used to examine cell proliferation. Cell migration was appraised with scratch assay, Transwell assay, and Western blot. Eventually, MCF-7 cells were treated with ADR for 48 h to induce ADR resistance. Cell viability was tested by CCK-8 assay and cell apoptosis was estimated based on terminal-deoxynucleoitidyl transferase mediated nick end labeling(TUNEL) assay and Western blot. Based on Protein Data Bank(PDB) and molecular docking, the binding affinity of ECH to AKR1B10 was assessed. Various doses of ECH decreased the expression of AKR1B10/ERK pathway-associated proteins in a dose-dependent manner and declined cell viability compared with the control group. Compared with the control group, 40 µg·mL~(-1) ECH blocked the AKR1B10/ERK pathway in MCF-7 cells and inhibited the proliferation, metastasis and ADR resistance of the cells. Compared with the ECH + Ov-NC group, ECH + Ov-AKR1B10 group showed the recovery of some biological behaviors of MCF-7 cells. ECH also targeted AKR1B10. ECH can inhibit the proliferation, metastasis, and ADR resistance of BC cells by blocking AKR1B10/ERK pathway.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Límite: Humans Idioma: Zh Revista: Zhongguo Zhong Yao Za Zhi Asunto de la revista: FARMACOLOGIA / TERAPIAS COMPLEMENTARES Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Límite: Humans Idioma: Zh Revista: Zhongguo Zhong Yao Za Zhi Asunto de la revista: FARMACOLOGIA / TERAPIAS COMPLEMENTARES Año: 2023 Tipo del documento: Article País de afiliación: China
...