Your browser doesn't support javascript.
loading
Aza-phenol Based Macrocyclic Probes Design for "CHEF-on" Multi Analytes Sensor: Crystal Structure Elucidation and Application in Biological Cell Imaging.
Khatun, Mohafuza; Ghorai, Pravat; Mandal, Jayanta; Ghosh Chowdhury, Sougata; Karmakar, Parimal; Blasco, Salvador; García-España, Enrique; Saha, Amrita.
Afiliación
  • Khatun M; Department of Chemistry, Jadavpur University, Kolkata 700032, India.
  • Ghorai P; Department of Chemistry, Jadavpur University, Kolkata 700032, India.
  • Mandal J; Department of Chemistry, Jadavpur University, Kolkata 700032, India.
  • Ghosh Chowdhury S; Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India.
  • Karmakar P; Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India.
  • Blasco S; Institute of Molecular Sciences, Universitat de València, C/Catedrático José Beltrán Martínez, 2, Paterna, Valencia 46980, Spain.
  • García-España E; Institute of Molecular Sciences, Universitat de València, C/Catedrático José Beltrán Martínez, 2, Paterna, Valencia 46980, Spain.
  • Saha A; Department of Chemistry, Jadavpur University, Kolkata 700032, India.
ACS Omega ; 8(8): 7479-7491, 2023 Feb 28.
Article en En | MEDLINE | ID: mdl-36873024
ABSTRACT
Metal bound macrocyclic compounds found in biological systems inspired us to design and synthesize two Robson-type macrocyclic Schiff-base chemosensors, H 2 L1 (H 2 L1=1,11-dimethyl-6,16-dithia-3,9,13,19-tetraaza-1,11(1,3)-dibenzenacycloicosaphane-2,9,12,19-tetraene-1,11-diol) and H 2 L2 (H 2 L2=1,11-dimethyl-6,16-dioxa-3,9,13,19-tetraaza-1,11(1,3)-dibenzenacycloicosaphane-2,9,12,19-tetraene-1,11-diol). Both the chemosensors have been characterized with different spectroscopic techniques. They act as multianalyte sensor and exhibit "turn-on" fluorescence toward different metal ions in 1X PBS (Phosphate Buffered Saline) solution. In presence of Zn2+, Al3+, Cr3+ and Fe3+ ions, H 2 L1 exhibits ∼6-fold enhancement of emission intensity, while H 2 L2 shows ∼6-fold enhancement of emission intensity in the presence of Zn2+, Al3+ and Cr3+ ions. The interaction between the different metal ion and chemosensor have been examined by absorption, emission, and 1H NMR spectroscopy as well as by ESI-MS+ analysis. We have successfully isolated and solved the crystal structure of the complex [Zn(H 2 L1)(NO3)]NO3 (1) by X-ray crystallography. The crystal structure of 1 shows 11 metalligand stoichiometry and helps to understand the observed PET-Off-CHEF-On sensing mechanism. LOD values of H 2 L1 and H 2 L2 toward metal ions are found to be ∼10-8 and ∼10-7 M, respectively. Large Stokes shifts of the probes against analytes (∼100 nm) make them a suitable candidate for biological cell imaging studies. Robson type phenol based macrocyclic fluorescence sensors are very scarce in the literature. Therefore, the tuning of structural parameters as the number and nature of donor atoms, their relative locations and presence of rigid aromatic groups can lead to the design of new chemosensors, which can accommodate different charged/neutral guest(s) inside its cavity. The study of the spectroscopic properties of this type of macrocyclic ligands and their complexes might open a new avenue of chemosensors.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Omega Año: 2023 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Omega Año: 2023 Tipo del documento: Article País de afiliación: India
...