Your browser doesn't support javascript.
loading
Comprehensive analysis of metabolome and transcriptome reveals the mechanism of color formation in different leave of Loropetalum Chinense var. Rubrum.
Zhang, Xia; Zhang, Li; Zhang, Damao; Su, Dingding; Li, Weidong; Wang, Xiangfei; Chen, Qianru; Cai, Wenqi; Xu, Lu; Cao, Fuxiang; Zhang, Dongling; Yu, Xiaoying; Li, Yanlin.
Afiliación
  • Zhang X; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
  • Zhang L; College of Horticulture, Hunan Agricultural University, 410128, Changsha, China.
  • Zhang D; Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China.
  • Su D; Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China.
  • Li W; College of Horticulture, Hunan Agricultural University, 410128, Changsha, China.
  • Wang X; Hunan Horticulture Research Institute, Hunan Academy of Agricultural Sciences, 410125, Changsha, China.
  • Chen Q; College of Horticulture, Hunan Agricultural University, 410128, Changsha, China.
  • Cai W; Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China.
  • Xu L; Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China.
  • Cao F; Institute of Advanced Agricultural Sciences, Peking University, 262041, Weifang, China.
  • Zhang D; Hunan Horticulture Research Institute, Hunan Academy of Agricultural Sciences, 410125, Changsha, China.
  • Yu X; Hunan Key Laboratory of Innovation and Comprehensive Utilization, 410128, Changsha, China.
  • Li Y; College of Horticulture, Hunan Agricultural University, 410128, Changsha, China.
BMC Plant Biol ; 23(1): 133, 2023 Mar 08.
Article en En | MEDLINE | ID: mdl-36882694
ABSTRACT

BACKGROUND:

Loropetalum chinense var. rubrum (L. chinense var. rubrum) is a precious, coloured-leaf native ornamental plant in the Hunan Province. We found an L. chinense var. rubrum tree with three different leaf colours GL (green leaf), ML (mosaic leaf), and PL (purple leaf). The mechanism of leaf coloration in this plant is still unclear. Therefore, this study aimed to identify the metabolites and genes involved in determining the colour composition of L. chinense var. rubrum leaves, using phenotypic/anatomic observations, pigment content detection, and comparative metabolomics and transcriptomics.

RESULTS:

We observed that the mesophyll cells in PL were purple, while those in GL were green and those in ML were a mix of purple-green. The contents of chlorophyll a, b, carotenoids, and total chlorophyll in PL and ML were significantly lower than those in GL. While the anthocyanin content in PL and ML was significantly higher than that in GL. The metabolomics results showed the differences in the content of cyanidin 3-O-glucoside, delphinidin 3-O-glucoside, cyanidin 3,5-O-diglucoside, pelargonidin, and petunidin 3,5-diglucoside in ML, GL, and PL were significant. Considering that the change trend of anthocyanin content change was consistent with the leaf colour difference, we speculated that these compounds might influence the colour of L. chinense var. rubrum leaves. Using transcriptomics, we finally identified nine differentially expressed structural genes (one ANR (ANR1217); four CYP75As (CYP75A1815, CYP75A2846, CYP75A2909, and CYP75A1716); four UFGTs (UFGT1876, UFGT1649, UFGT1839, and UFGT3273) and nine transcription factors (two MYBs (MYB1057 and MYB1211), one MADS-box (MADS1235), two AP2-likes (AP2-like1779 and AP2-like2234), one bZIP (bZIP3720), two WD40s (WD2173 and WD1867) and one bHLH (bHLH1631) that might be related to flavonoid biosynthesis and then impacted the appearance of colour in L. chinense var. rubrum leaves.

CONCLUSION:

This study revealed potential molecular mechanisms associated with leaf coloration in L. chinense var. rubrum by analyzing differential metabolites and genes related to the anthocyanin biosynthesis pathway. It also provided a reference for research on leaf colour variation in other ornamental plants.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transcriptoma / Antocianinas Tipo de estudio: Prognostic_studies Idioma: En Revista: BMC Plant Biol Asunto de la revista: BOTANICA Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transcriptoma / Antocianinas Tipo de estudio: Prognostic_studies Idioma: En Revista: BMC Plant Biol Asunto de la revista: BOTANICA Año: 2023 Tipo del documento: Article País de afiliación: China
...