Knots are not for naught: Design, properties, and topology of hierarchical intertwined microarchitected materials.
Sci Adv
; 9(10): eade6725, 2023 Mar 10.
Article
en En
| MEDLINE
| ID: mdl-36888702
Lightweight and tough engineered materials are often designed with three-dimensional hierarchy and interconnected structural members whose junctions are detrimental to their performance because they serve as stress concentrations for damage accumulation and lower mechanical resilience. We introduce a previously unexplored class of architected materials, whose components are interwoven and contain no junctions, and incorporate micro-knots as building blocks within these hierarchical networks. Tensile experiments, which show close quantitative agreements with an analytical model for overhand knots, reveal that knot topology allows a new regime of deformation capable of shape retention, leading to a ~92% increase in absorbed energy and an up to ~107% increase in failure strain compared to woven structures, along with an up to ~11% increase in specific energy density compared to topologically similar monolithic lattices. Our exploration unlocks knotting and frictional contact to create highly extensible low-density materials with tunable shape reconfiguration and energy absorption capabilities.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Sci Adv
Año:
2023
Tipo del documento:
Article
País de afiliación:
Estados Unidos