Your browser doesn't support javascript.
loading
Cheminformatics-Based Study Identifies Potential Ebola VP40 Inhibitors.
Broni, Emmanuel; Ashley, Carolyn; Adams, Joseph; Manu, Hammond; Aikins, Ebenezer; Okom, Mary; Miller, Whelton A; Wilson, Michael D; Kwofie, Samuel K.
Afiliación
  • Broni E; Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana.
  • Ashley C; Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana.
  • Adams J; Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA.
  • Manu H; Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA.
  • Aikins E; Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana.
  • Okom M; Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana.
  • Miller WA; Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana.
  • Wilson MD; Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana.
  • Kwofie SK; Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA.
Int J Mol Sci ; 24(7)2023 Mar 27.
Article en En | MEDLINE | ID: mdl-37047270
The Ebola virus (EBOV) is still highly infectious and causes severe hemorrhagic fevers in primates. However, there are no regulatorily approved drugs against the Ebola virus disease (EVD). The highly virulent and lethal nature of EVD highlights the need to develop therapeutic agents. Viral protein 40 kDa (VP40), the most abundantly expressed protein during infection, coordinates the assembly, budding, and release of viral particles into the host cell. It also regulates viral transcription and RNA replication. This study sought to identify small molecules that could potentially inhibit the VP40 protein by targeting the N-terminal domain using an in silico approach. The statistical quality of AutoDock Vina's capacity to discriminate between inhibitors and decoys was determined, and an area under the curve of the receiver operating characteristic (AUC-ROC) curve of 0.791 was obtained. A total of 29,519 natural-product-derived compounds from Chinese and African sources as well as 2738 approved drugs were successfully screened against VP40. Using a threshold of -8 kcal/mol, a total of 7, 11, 163, and 30 compounds from the AfroDb, Northern African Natural Products Database (NANPDB), traditional Chinese medicine (TCM), and approved drugs libraries, respectively, were obtained after molecular docking. A biological activity prediction of the lead compounds suggested their potential antiviral properties. In addition, random-forest- and support-vector-machine-based algorithms predicted the compounds to be anti-Ebola with IC50 values in the micromolar range (less than 25 µM). A total of 42 natural-product-derived compounds were identified as potential EBOV inhibitors with desirable ADMET profiles, comprising 1, 2, and 39 compounds from NANPDB (2-hydroxyseneganolide), AfroDb (ZINC000034518176 and ZINC000095485942), and TCM, respectively. A total of 23 approved drugs, including doramectin, glecaprevir, velpatasvir, ledipasvir, avermectin B1, nafarelin acetate, danoprevir, eltrombopag, lanatoside C, and glycyrrhizin, among others, were also predicted to have potential anti-EBOV activity and can be further explored so that they may be repurposed for EVD treatment. Molecular dynamics simulations coupled with molecular mechanics Poisson-Boltzmann surface area calculations corroborated the stability and good binding affinities of the complexes (-46.97 to -118.9 kJ/mol). The potential lead compounds may have the potential to be developed as anti-EBOV drugs after experimental testing.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fiebre Hemorrágica Ebola / Ebolavirus Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Int J Mol Sci Año: 2023 Tipo del documento: Article País de afiliación: Ghana

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fiebre Hemorrágica Ebola / Ebolavirus Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Int J Mol Sci Año: 2023 Tipo del documento: Article País de afiliación: Ghana
...