Your browser doesn't support javascript.
loading
Sources, bioaccumulation, and toxicity mechanisms of cadmium in Chlamys farreri.
Liu, Huan; Tian, Xiuhui; Jiang, Lisheng; Han, Dianfeng; Hu, Shunxin; Cui, Yanmei; Jiang, Fang; Liu, Yongchun; Xu, Yingjiang; Li, Huanjun.
Afiliación
  • Liu H; Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China; School of Bioengin
  • Tian X; Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China.
  • Jiang L; Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China.
  • Han D; Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China.
  • Hu S; Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China.
  • Cui Y; Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China.
  • Jiang F; Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China.
  • Liu Y; Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China.
  • Xu Y; Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China. Electronic address
  • Li H; Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China. Electronic address
J Hazard Mater ; 453: 131395, 2023 07 05.
Article en En | MEDLINE | ID: mdl-37058935
ABSTRACT
The Potentially toxic elements (PTEs) cadmium (Cd) is one of the most serious stressors polluting the marine environment. Marine bivalves have specific high enrichment capacity for Cd. Previous studies have investigated the tissue distribution changes and toxic effects of Cd in bivalves, but the sources of Cd enrichment, migration regulation during growth, and toxicity mechanisms in bivalves have not been fully explained. Here, we used stable-isotope labeling to investigate the contributions of Cd from different sources to scallop tissues. We sampled the entire growth cycle of Chlamys farreri, which is widely cultured in northern China, from juveniles to adult scallops. We found tissue variability in the bioconcentration-metabolism pattern of Cd in different bound states, with Cd in the aqueous accounting for a significant contribution. The accumulation pattern of Cd in all tissues during growth was more significant in the viscera and gills. Additionally, we combined a multi-omics approach to reveal a network of oxidative stress-induced toxicity mechanisms of Cd in scallops, identifying differentially expressed genes and proteins involved in metal ion binding, oxidative stress, energy metabolism, and apoptosis. Our findings have important implications for both ecotoxicology and aquaculture. They also provide new insights into marine environmental assessment and mariculture development.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Bivalvos / Pectinidae Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Bivalvos / Pectinidae Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2023 Tipo del documento: Article
...