Kagome Lattice Promotes Chiral Spin Fluctuations.
Phys Rev Lett
; 130(13): 136701, 2023 Mar 31.
Article
en En
| MEDLINE
| ID: mdl-37067304
Dynamical spin fluctuations in magnets can be endowed with a slight bent toward left- or right-handed chirality by Dzyaloshinskii-Moriya interactions. However, little is known about the crucial role of lattice geometry on these chiral spin fluctuations and on fluctuation-related transport anomalies driven by the quantum-mechanical (Berry) phase of conduction electrons. Via thermoelectric Nernst effect and electric Hall effect experiments, we detect chiral spin fluctuations in the paramagnetic regime of a kagome lattice magnet; these signals are largely absent in a comparable triangular lattice magnet. Supported by Monte Carlo calculations, we identify lattices with at least two dissimilar plaquettes as most promising for Berry phase phenomena driven by thermal fluctuations in paramagnets.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Phys Rev Lett
Año:
2023
Tipo del documento:
Article
País de afiliación:
Japón