Your browser doesn't support javascript.
loading
Dense-Packed RuO2 Nanorods with In Situ Generated Metal Vacancies Loaded on SnO2 Nanocubes for Proton Exchange Membrane Water Electrolyzer with Ultra-Low Noble Metal Loading.
Huang, Bing; Cui, Yaqi; Liu, Xuwei; Zheng, Caixia; Wang, Hao; Guan, Lunhui.
Afiliación
  • Huang B; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350000, China.
  • Cui Y; College of Material Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Liu X; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350000, China.
  • Zheng C; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350000, China.
  • Wang H; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350000, China.
  • Guan L; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350000, China.
Small ; 19(34): e2301516, 2023 Aug.
Article en En | MEDLINE | ID: mdl-37086123
ABSTRACT
Proton exchange membrane water electrolyzer (PEMWE) is a green hydrogen production technology that can be coupled with intermittent power sources such as wind and photoelectric power. To achieve cost-effective operations, low noble metal loading on the anode catalyst layer is desired. In this study, a catalyst with RuO2 nanorods coated outside SnO2 nanocubes is designed, which forms continuous networks and provides high conductivity. This allows for the reduction of Ru contents in catalysts. Furthermore, the structure evolutions on the RuO2 surface are carefully investigated. The etched RuO2 surfaces are seen as the consequence of Co leaching, and theoretical calculations demonstrate that it is more effective in driving oxygen evolution. For electrochemical tests, the catalysts with 23 wt% Ru exhibit an overpotential of 178 mV at 10 mA cm-2 , which is much higher than most state-of-art oxygen evolution catalysts. In a practical PEMWE, the noble metal Ru loading on the anode side is only 0.3 mg cm-2 . The cell achieves 1.61 V at 1 A cm-2 and proper stability at 500 mA cm-2 , demonstrating the effectiveness of the designed catalyst.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: China
...