Your browser doesn't support javascript.
loading
Short human eccDNAs are predictable from sequences.
Chang, Kai-Li; Chen, Jia-Hong; Lin, Tzu-Chieh; Leu, Jun-Yi; Kao, Cheng-Fu; Wong, Jin Yung; Tsai, Huai-Kuang.
Afiliación
  • Chang KL; Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan.
  • Chen JH; Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan.
  • Lin TC; Department of Electrical Engineering, National Taiwan University, Taipei, 106, Taiwan.
  • Leu JY; Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan.
  • Kao CF; Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan.
  • Wong JY; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan.
  • Tsai HK; Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan.
Brief Bioinform ; 24(3)2023 05 19.
Article en En | MEDLINE | ID: mdl-37088981
BACKGROUND: Ubiquitous presence of short extrachromosomal circular DNAs (eccDNAs) in eukaryotic cells has perplexed generations of biologists. Their widespread origins in the genome lacking apparent specificity led some studies to conclude their formation as random or near-random. Despite this, the search for specific formation of short eccDNA continues with a recent surge of interest in biomarker development. RESULTS: To shed new light on the conflicting views on short eccDNAs' randomness, here we present DeepCircle, a bioinformatics framework incorporating convolution- and attention-based neural networks to assess their predictability. Short human eccDNAs from different datasets indeed have low similarity in genomic locations, but DeepCircle successfully learned shared DNA sequence features to make accurate cross-datasets predictions (accuracy: convolution-based models: 79.65 ± 4.7%, attention-based models: 83.31 ± 4.18%). CONCLUSIONS: The excellent performance of our models shows that the intrinsic predictability of eccDNAs is encoded in the sequences across tissue origins. Our work demonstrates how the perceived lack of specificity in genomics data can be re-assessed by deep learning models to uncover unexpected similarity.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ADN / ADN Circular Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2023 Tipo del documento: Article País de afiliación: Taiwán

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ADN / ADN Circular Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2023 Tipo del documento: Article País de afiliación: Taiwán
...