The Thioredoxin System in Edwardsiella piscicida Contributes to Oxidative Stress Tolerance, Motility, and Virulence.
Microorganisms
; 11(4)2023 Mar 24.
Article
en En
| MEDLINE
| ID: mdl-37110252
Edwardsiella piscicida is an important fish pathogen that causes substantial economic losses. In order to understand its pathogenic mechanism, additional new virulence factors need to be identified. The bacterial thioredoxin system is a major disulfide reductase system, but its function is largely unknown in E. piscicida. In this study, we investigated the roles of the thioredoxin system in E. piscicida (named TrxBEp, TrxAEp, and TrxCEp, respectively) by constructing a correspondingly markerless in-frame mutant strain: ΔtrxB, ΔtrxA, and ΔtrxC, respectively. We found that (i) TrxBEp is confirmed as an intracellular protein, which is different from the prediction made by the Protter illustration; (ii) compared to the wild-type strain, ΔtrxB exhibits resistance against H2O2 stress but high sensitivity to thiol-specific diamide stress, while ΔtrxA and ΔtrxC are moderately sensitive to both H2O2 and diamide conditions; (iii) the deletions of trxBEp, trxAEp, and trxCEp damage E. piscicida's flagella formation and motility, and trxBEp plays a decisive role; (iv) deletions of trxBEp, trxAEp, and trxCEp substantially abate bacterial resistance against host serum, especially trxBEp deletion; (v) trxAEp and trxCEp, but not trxBEp, are involved in bacterial survival and replication in phagocytes; (vi) the thioredoxin system participates in bacterial dissemination in host immune tissues. These findings indicate that the thioredoxin system of E. piscicida plays an important role in stress resistance and virulence, which provides insight into the pathogenic mechanism of E. piscicida.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Microorganisms
Año:
2023
Tipo del documento:
Article
País de afiliación:
China