Tunability of spin-wave spectra in a 2D triangular shaped magnonic fractals.
J Phys Condens Matter
; 35(32)2023 May 12.
Article
en En
| MEDLINE
| ID: mdl-37116510
Reprogramming the structure of the magnonic bands during their operation is important for controlling spin waves in magnonic devices. Here, we report the tunability of the spin-wave spectra for a triangular shaped deterministic magnonic fractal, which is known as Sierpinski triangle by solving the Landau-Lifshitz-Gilbert equation using a micromagnetic simulations. The spin-wave dynamics change significantly with the variation of iteration number. A wide frequency gap is observed for a structure with an iteration number exceeding some value and a plenty of mini-frequency bandgaps at structures with high iteration number. The frequency gap could be controlled by varying the strength of the magnetic field. A sixfold symmetry in the frequency gap is observed with the variation of the azimuthal angle of the external magnetic field. The spatial distributions of the spin-wave modes allow to identify the bands surrounding the gap. The observations are important for the application of magnetic fractals as a reconfigurable aperiodic magnonic crystals.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Phys Condens Matter
Asunto de la revista:
BIOFISICA
Año:
2023
Tipo del documento:
Article
País de afiliación:
India