Potential role of N6-adenine DNA methylation in alternative splicing and endosymbiosis in Paramecium bursaria.
iScience
; 26(5): 106676, 2023 May 19.
Article
en En
| MEDLINE
| ID: mdl-37182097
N6-adenine DNA methylation (6mA), a rediscovered epigenetic mark in eukaryotic organisms, diversifies in abundance, distribution, and function across species, necessitating its study in more taxa. Paramecium bursaria is a typical model organism with endosymbiotic algae of the species Chlorella variabilis. This consortium therefore serves as a valuable system to investigate the functional role of 6mA in endosymbiosis, as well as the evolutionary importance of 6mA among eukaryotes. In this study, we report the first genome-wide, base pair-resolution map of 6mA in P. bursaria and identify its methyltransferase PbAMT1. Functionally, 6mA exhibits a bimodal distribution at the 5' end of RNA polymerase II-transcribed genes and possibly participates in transcription by facilitating alternative splicing. Evolutionarily, 6mA co-evolves with gene age and likely serves as a reverse mark of endosymbiosis-related genes. Our results offer new insights for the functional diversification of 6mA in eukaryotes as an important epigenetic mark.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
IScience
Año:
2023
Tipo del documento:
Article
País de afiliación:
China