Your browser doesn't support javascript.
loading
SC-AIR-BERT: a pre-trained single-cell model for predicting the antigen-binding specificity of the adaptive immune receptor.
Zhao, Yu; Su, Xiaona; Zhang, Weitong; Mai, Sijie; Xu, Zhimeng; Qin, Chenchen; Yu, Rongshan; He, Bing; Yao, Jianhua.
Afiliación
  • Zhao Y; AI Lab, Tencent, Viseen Business Park, Gaoxin 9th South Road, 518057 Shenzhen, China.
  • Su X; School of Informatics, Xiamen University, South Siming Road 422, 361005 Xiamen, China.
  • Zhang W; AI Lab, Tencent, Viseen Business Park, Gaoxin 9th South Road, 518057 Shenzhen, China.
  • Mai S; AI Lab, Tencent, Viseen Business Park, Gaoxin 9th South Road, 518057 Shenzhen, China.
  • Xu Z; Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR.
  • Qin C; School of Electronic and Information Technology, Sun Yat-sen University, Xingangxi Road 135, 510275 Guangzhou, China.
  • Yu R; AI Lab, Tencent, Viseen Business Park, Gaoxin 9th South Road, 518057 Shenzhen, China.
  • He B; AI Lab, Tencent, Viseen Business Park, Gaoxin 9th South Road, 518057 Shenzhen, China.
  • Yao J; School of Informatics, Xiamen University, South Siming Road 422, 361005 Xiamen, China.
Brief Bioinform ; 24(4)2023 07 20.
Article en En | MEDLINE | ID: mdl-37204192
Accurately predicting the antigen-binding specificity of adaptive immune receptors (AIRs), such as T-cell receptors (TCRs) and B-cell receptors (BCRs), is essential for discovering new immune therapies. However, the diversity of AIR chain sequences limits the accuracy of current prediction methods. This study introduces SC-AIR-BERT, a pre-trained model that learns comprehensive sequence representations of paired AIR chains to improve binding specificity prediction. SC-AIR-BERT first learns the 'language' of AIR sequences through self-supervised pre-training on a large cohort of paired AIR chains from multiple single-cell resources. The model is then fine-tuned with a multilayer perceptron head for binding specificity prediction, employing the K-mer strategy to enhance sequence representation learning. Extensive experiments demonstrate the superior AUC performance of SC-AIR-BERT compared with current methods for TCR- and BCR-binding specificity prediction.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Receptores de Antígenos de Linfocitos B / Receptores de Antígenos de Linfocitos T Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Receptores de Antígenos de Linfocitos B / Receptores de Antígenos de Linfocitos T Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2023 Tipo del documento: Article País de afiliación: China
...