SC-AIR-BERT: a pre-trained single-cell model for predicting the antigen-binding specificity of the adaptive immune receptor.
Brief Bioinform
; 24(4)2023 07 20.
Article
en En
| MEDLINE
| ID: mdl-37204192
Accurately predicting the antigen-binding specificity of adaptive immune receptors (AIRs), such as T-cell receptors (TCRs) and B-cell receptors (BCRs), is essential for discovering new immune therapies. However, the diversity of AIR chain sequences limits the accuracy of current prediction methods. This study introduces SC-AIR-BERT, a pre-trained model that learns comprehensive sequence representations of paired AIR chains to improve binding specificity prediction. SC-AIR-BERT first learns the 'language' of AIR sequences through self-supervised pre-training on a large cohort of paired AIR chains from multiple single-cell resources. The model is then fine-tuned with a multilayer perceptron head for binding specificity prediction, employing the K-mer strategy to enhance sequence representation learning. Extensive experiments demonstrate the superior AUC performance of SC-AIR-BERT compared with current methods for TCR- and BCR-binding specificity prediction.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Receptores de Antígenos de Linfocitos B
/
Receptores de Antígenos de Linfocitos T
Tipo de estudio:
Prognostic_studies
/
Risk_factors_studies
Límite:
Humans
Idioma:
En
Revista:
Brief Bioinform
Asunto de la revista:
BIOLOGIA
/
INFORMATICA MEDICA
Año:
2023
Tipo del documento:
Article
País de afiliación:
China