Your browser doesn't support javascript.
loading
An autonomous X-ray image acquisition and interpretation system for assisting percutaneous pelvic fracture fixation.
Killeen, Benjamin D; Gao, Cong; Oguine, Kanyifeechukwu J; Darcy, Sean; Armand, Mehran; Taylor, Russell H; Osgood, Greg; Unberath, Mathias.
Afiliación
  • Killeen BD; Johns Hopkins University, Baltimore, 21210, MD, USA. killeen@jhu.edu.
  • Gao C; Johns Hopkins University, Baltimore, 21210, MD, USA.
  • Oguine KJ; Johns Hopkins University, Baltimore, 21210, MD, USA.
  • Darcy S; Johns Hopkins University, Baltimore, 21210, MD, USA.
  • Armand M; Johns Hopkins University, Baltimore, 21210, MD, USA.
  • Taylor RH; Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, USA.
  • Osgood G; Johns Hopkins University, Baltimore, 21210, MD, USA.
  • Unberath M; Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, USA.
Int J Comput Assist Radiol Surg ; 18(7): 1201-1208, 2023 Jul.
Article en En | MEDLINE | ID: mdl-37213057
ABSTRACT

PURPOSE:

Percutaneous fracture fixation involves multiple X-ray acquisitions to determine adequate tool trajectories in bony anatomy. In order to reduce time spent adjusting the X-ray imager's gantry, avoid excess acquisitions, and anticipate inadequate trajectories before penetrating bone, we propose an autonomous system for intra-operative feedback that combines robotic X-ray imaging and machine learning for automated image acquisition and interpretation, respectively.

METHODS:

Our approach reconstructs an appropriate trajectory in a two-image sequence, where the optimal second viewpoint is determined based on analysis of the first image. A deep neural network is responsible for detecting the tool and corridor, here a K-wire and the superior pubic ramus, respectively, in these radiographs. The reconstructed corridor and K-wire pose are compared to determine likelihood of cortical breach, and both are visualized for the clinician in a mixed reality environment that is spatially registered to the patient and delivered by an optical see-through head-mounted display.

RESULTS:

We assess the upper bounds on system performance through in silico evaluation across 11 CTs with fractures present, in which the corridor and K-wire are adequately reconstructed. In post hoc analysis of radiographs across 3 cadaveric specimens, our system determines the appropriate trajectory to within 2.8 ± 1.3 mm and 2.7 ± 1.8[Formula see text].

CONCLUSION:

An expert user study with an anthropomorphic phantom demonstrates how our autonomous, integrated system requires fewer images and lower movement to guide and confirm adequate placement compared to current clinical practice. Code and data are available.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagenología Tridimensional / Fracturas Óseas Límite: Humans Idioma: En Revista: Int J Comput Assist Radiol Surg Asunto de la revista: RADIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagenología Tridimensional / Fracturas Óseas Límite: Humans Idioma: En Revista: Int J Comput Assist Radiol Surg Asunto de la revista: RADIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos
...