Your browser doesn't support javascript.
loading
Solar-Driven CO2 Conversion via Optimized Photothermal Catalysis in a Lotus Pod Structure.
Wang, Hongmin; Fu, Shuting; Shang, Bo; Jeon, Sungho; Zhong, Yiren; Harmon, Nia J; Choi, Chungseok; Stach, Eric A; Wang, Hailiang.
Afiliación
  • Wang H; Department of Chemistry, Yale University, CT 06520, New Haven, USA.
  • Fu S; Energy Sciences Institute, Yale University, CT 06516, West Haven, USA.
  • Shang B; Department of Chemistry, Yale University, CT 06520, New Haven, USA.
  • Jeon S; Energy Sciences Institute, Yale University, CT 06516, West Haven, USA.
  • Zhong Y; Department of Chemistry, Yale University, CT 06520, New Haven, USA.
  • Harmon NJ; Energy Sciences Institute, Yale University, CT 06516, West Haven, USA.
  • Choi C; Department of Materials Science and Engineering, University of Pennsylvania, PA 19104, Philadelphia, USA.
  • Stach EA; Department of Chemistry, Yale University, CT 06520, New Haven, USA.
  • Wang H; Energy Sciences Institute, Yale University, CT 06516, West Haven, USA.
Angew Chem Int Ed Engl ; 62(30): e202305251, 2023 Jul 24.
Article en En | MEDLINE | ID: mdl-37235523
ABSTRACT
Photothermal CO2 reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active material loading, and high material cost. Herein, we report a potassium-modified carbon-supported cobalt (K+ -Co-C) catalyst mimicking the structure of a lotus pod that addresses these challenges. As a result of the designed lotus-pod structure which features an efficient photothermal C substrate with hierarchical pores, an intimate Co/C interface with covalent bonding, and exposed Co catalytic sites with optimized CO binding strength, the K+ -Co-C catalyst shows a record-high photothermal CO2 hydrogenation rate of 758 mmol gcat -1 h-1 (2871 mmol gCo -1 h-1 ) with a 99.8 % selectivity for CO, three orders of magnitude higher than typical photochemical CO2 reduction reactions. We further demonstrate with this catalyst effective CO2 conversion under natural sunlight one hour before sunset during the winter season, putting forward an important step towards practical solar fuel production.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos
...