Your browser doesn't support javascript.
loading
Synthetic CT generation from CBCT using double-chain-CycleGAN.
Deng, Liwei; Ji, Yufei; Huang, Sijuan; Yang, Xin; Wang, Jing.
Afiliación
  • Deng L; Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration, School of Automation, Harbin University of Science and Technology, Harbin, 150080, China.
  • Ji Y; Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration, School of Automation, Harbin University of Science and Technology, Harbin, 150080, China.
  • Huang S; Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, 510060, China.
  • Yang X; Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, 510060, China. Electronic ad
  • Wang J; Institute for Brain Research and Rehabilitation, South China Normal University, 510631, Guangzhou, China. Electronic address: wangjing_2022010@m.scnu.edu.cn.
Comput Biol Med ; 161: 106889, 2023 07.
Article en En | MEDLINE | ID: mdl-37244147
ABSTRACT

PURPOSE:

Cone-beam CT (CBCT) has the advantage of being less expensive, lower radiation dose, less harm to patients, and higher spatial resolution. However, noticeable noise and defects, such as bone and metal artifacts, limit its clinical application in adaptive radiotherapy. To explore the potential application value of CBCT in adaptive radiotherapy, In this study, we improve the cycle-GAN's backbone network structure to generate higher quality synthetic CT (sCT) from CBCT.

METHOD:

An auxiliary chain containing a Diversity Branch Block (DBB) module is added to CycleGAN's generator to obtain low-resolution supplementary semantic information. Moreover, an adaptive learning rate adjustment strategy (Alras) function is used to improve stability in training. Furthermore, Total Variation Loss (TV loss) is added to generator loss to improve image smoothness and reduce noise.

RESULTS:

Compared to CBCT images, the Root Mean Square Error (RMSE) dropped by 27.97 from 158.49. The Mean Absolute Error (MAE) of the sCT generated by our model improved from 43.2 to 32.05. The Peak Signal-to-Noise Ratio (PSNR) increased by 1.61 from 26.19. The Structural Similarity Index Measure (SSIM) improved from 0.948 to 0.963, and the Gradient Magnitude Similarity Deviation (GMSD) improved from 12.98 to 9.33. The generalization experiments show that our model performance is still superior to CycleGAN and respath-CycleGAN.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tomografía Computarizada de Haz Cónico Espiral / Aprendizaje Profundo Límite: Humans Idioma: En Revista: Comput Biol Med Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tomografía Computarizada de Haz Cónico Espiral / Aprendizaje Profundo Límite: Humans Idioma: En Revista: Comput Biol Med Año: 2023 Tipo del documento: Article País de afiliación: China
...