Your browser doesn't support javascript.
loading
Enhanced rare-earth separation with a metal-sensitive lanmodulin dimer.
Mattocks, Joseph A; Jung, Jonathan J; Lin, Chi-Yun; Dong, Ziye; Yennawar, Neela H; Featherston, Emily R; Kang-Yun, Christina S; Hamilton, Timothy A; Park, Dan M; Boal, Amie K; Cotruvo, Joseph A.
Afiliación
  • Mattocks JA; Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
  • Jung JJ; Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
  • Lin CY; Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
  • Dong Z; Critical Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Yennawar NH; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
  • Featherston ER; Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
  • Kang-Yun CS; Critical Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Hamilton TA; Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
  • Park DM; Critical Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA. park36@llnl.gov.
  • Boal AK; Department of Chemistry, The Pennsylvania State University, University Park, PA, USA. akb20@psu.edu.
  • Cotruvo JA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA. akb20@psu.edu.
Nature ; 618(7963): 87-93, 2023 Jun.
Article en En | MEDLINE | ID: mdl-37259003
ABSTRACT
Technologically critical rare-earth elements are notoriously difficult to separate, owing to their subtle differences in ionic radius and coordination number1-3. The natural lanthanide-binding protein lanmodulin (LanM)4,5 is a sustainable alternative to conventional solvent-extraction-based separation6. Here we characterize a new LanM, from Hansschlegelia quercus (Hans-LanM), with an oligomeric state sensitive to rare-earth ionic radius, the lanthanum(III)-induced dimer being >100-fold tighter than the dysprosium(III)-induced dimer. X-ray crystal structures illustrate how picometre-scale differences in radius between lanthanum(III) and dysprosium(III) are propagated to Hans-LanM's quaternary structure through a carboxylate shift that rearranges a second-sphere hydrogen-bonding network. Comparison to the prototypal LanM from Methylorubrum extorquens reveals distinct metal coordination strategies, rationalizing Hans-LanM's greater selectivity within the rare-earth elements. Finally, structure-guided mutagenesis of a key residue at the Hans-LanM dimer interface modulates dimerization in solution and enables single-stage, column-based separation of a neodymium(III)/dysprosium(III) mixture to >98% individual element purities. This work showcases the natural diversity of selective lanthanide recognition motifs, and it reveals rare-earth-sensitive dimerization as a biological principle by which to tune the performance of biomolecule-based separation processes.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas Bacterianas / Elementos de la Serie de los Lantanoides / Multimerización de Proteína / Lantano Tipo de estudio: Diagnostic_studies Idioma: En Revista: Nature Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas Bacterianas / Elementos de la Serie de los Lantanoides / Multimerización de Proteína / Lantano Tipo de estudio: Diagnostic_studies Idioma: En Revista: Nature Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos
...