Your browser doesn't support javascript.
loading
Uptake of long-chain fatty acids from the bone marrow suppresses CD8+ T-cell metabolism and function in multiple myeloma.
Gudgeon, Nancy; Giles, Hannah; Bishop, Emma L; Fulton-Ward, Taylor; Escribano-Gonzalez, Cristina; Munford, Haydn; James-Bott, Anna; Foster, Kane; Karim, Farheen; Jayawardana, Dedunu; Mahmood, Ansar; Cribbs, Adam P; Tennant, Daniel A; Basu, Supratik; Pratt, Guy; Dimeloe, Sarah.
Afiliación
  • Gudgeon N; Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
  • Giles H; Centre for Clinical Haematology, University Hospitals Birmingham NHS Trust, Birmingham, United Kingdom.
  • Bishop EL; Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
  • Fulton-Ward T; Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
  • Escribano-Gonzalez C; Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
  • Munford H; Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
  • James-Bott A; Nuffield Department of Orthopaedics, Botnar Research Centre, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit, University of Oxford, Oxford, United Kingdom.
  • Foster K; Research Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom.
  • Karim F; Clinical Haematology Unit, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, United Kingdom.
  • Jayawardana D; Clinical Haematology Unit, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, United Kingdom.
  • Mahmood A; Centre for Clinical Haematology, University Hospitals Birmingham NHS Trust, Birmingham, United Kingdom.
  • Cribbs AP; Nuffield Department of Orthopaedics, Botnar Research Centre, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit, University of Oxford, Oxford, United Kingdom.
  • Tennant DA; Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
  • Basu S; Clinical Haematology Unit, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, United Kingdom.
  • Pratt G; Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
  • Dimeloe S; Centre for Clinical Haematology, University Hospitals Birmingham NHS Trust, Birmingham, United Kingdom.
Blood Adv ; 7(20): 6035-6047, 2023 10 24.
Article en En | MEDLINE | ID: mdl-37276076
ABSTRACT
T cells demonstrate impaired function in multiple myeloma (MM) but suppressive mechanisms in the bone marrow microenvironment remain poorly defined. We observe that bone marrow CD8+ T-cell function is decreased in MM compared with controls, and is also consistently lower within bone marrow samples than in matched peripheral blood samples. These changes are accompanied by decreased mitochondrial mass and markedly elevated long-chain fatty acid uptake. In vitro modeling confirmed that uptake of bone marrow lipids suppresses CD8+ T function, which is impaired in autologous bone marrow plasma but rescued by lipid removal. Analysis of single-cell RNA-sequencing data identified expression of fatty acid transport protein 1 (FATP1) in bone marrow CD8+ T cells in MM, and FATP1 blockade also rescued CD8+ T-cell function, thereby identifying this as a novel target to augment T-cell activity in MM. Finally, analysis of samples from cohorts of patients who had received treatment identified that CD8+ T-cell metabolic dysfunction resolves in patients with MM who are responsive to treatment but not in patients with relapsed MM, and is associated with substantial T-cell functional restoration.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Mieloma Múltiple Límite: Humans Idioma: En Revista: Blood Adv Año: 2023 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Mieloma Múltiple Límite: Humans Idioma: En Revista: Blood Adv Año: 2023 Tipo del documento: Article País de afiliación: Reino Unido
...