TMPRSS2 Inhibitor Discovery Facilitated through an In Silico and Biochemical Screening Platform.
ACS Med Chem Lett
; 14(6): 860-866, 2023 Jun 08.
Article
en En
| MEDLINE
| ID: mdl-37284689
The COVID-19 pandemic has highlighted the need for new antiviral approaches because many of the currently approved drugs have proven ineffective against mitigating SARS-CoV-2 infections. The host transmembrane serine protease TMPRSS2 is a promising antiviral target because it plays a role in priming the spike protein before viral entry occurs for the most virulent variants. Further, TMPRSS2 has no established physiological role, thereby increasing its attractiveness as a target for antiviral agents. Here, we utilize virtual screening to curate large libraries into a focused collection of potential inhibitors. Optimization of a recombinant expression and purification protocol for the TMPRSS2 peptidase domain facilitates subsequent biochemical screening and characterization of selected compounds from the curated collection in a kinetic assay. In doing so, we identify new noncovalent TMPRSS2 inhibitors that block SARS-CoV-2 infectivity in a cellular model. One such inhibitor, debrisoquine, has high ligand efficiency, and an initial structure-activity relationship study demonstrates that debrisoquine is a tractable hit compound for TMPRSS2.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Diagnostic_studies
/
Screening_studies
Idioma:
En
Revista:
ACS Med Chem Lett
Año:
2023
Tipo del documento:
Article
País de afiliación:
Estados Unidos