Adsorption of Cd (II) by a novel living and non-living Cupriavidus necator GX_5: optimization, equilibrium and kinetic studies.
BMC Chem
; 17(1): 54, 2023 Jun 14.
Article
en En
| MEDLINE
| ID: mdl-37316907
Biosorbents have been extensively studied for heavy metal adsorption due to their advantages of low cost and high efficiency. In the study, the living and non-living biomass of Cupriavidus necator GX_5 previously isolated were evaluated for their adsorption capacity and/or removal efficiency for Cd (II) through batch experiments, SEM and FT-IR investigations. The maximum removal efficiency rates for the live and dead biomass were 60.51% and 78.53%, respectively, at an optimum pH of 6, a dosage of 1 g/L and an initial Cd (II) concentration of 5 mg/L. The pseudo-second-order kinetic model was more suitable for fitting the experimental data, indicating that the rate-limiting step might be chemisorption. The Freundlich isotherm model fit better than the Langmuir isotherm model, implying that the adsorption process of both biosorbents was heterogeneous. FT-IR observation reflected that various functional groups were involved in Cd (II) adsorption: -OH, -NH, C=O, C-O and C-C groups for the living biomass and -OH, -NH, C-H, C = O, C-N and N-H groups for the dead biomass. Our results imply that non-living biosorbents have a higher capacity and stronger strength for absorbing Cd (II) than living biomass. Therefore, we suggest that dead GX_5 is a promising adsorbent and can be used in Cd (II)-contaminated environments.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
BMC Chem
Año:
2023
Tipo del documento:
Article
País de afiliación:
China