Your browser doesn't support javascript.
loading
Photon bound state dynamics from a single artificial atom.
Tomm, Natasha; Mahmoodian, Sahand; Antoniadis, Nadia O; Schott, Rüdiger; Valentin, Sascha R; Wieck, Andreas D; Ludwig, Arne; Javadi, Alisa; Warburton, Richard J.
Afiliación
  • Tomm N; Department of Physics, University of Basel, Basel, Switzerland.
  • Mahmoodian S; Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, New South Wales Australia.
  • Antoniadis NO; Institute for Theoretical Physics, Institute for Gravitational Physics (Albert Einstein Institute), Leibniz University Hannover, Hannover, Germany.
  • Schott R; Department of Physics, University of Basel, Basel, Switzerland.
  • Valentin SR; Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Bochum, Germany.
  • Wieck AD; Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Bochum, Germany.
  • Ludwig A; Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Bochum, Germany.
  • Javadi A; Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Bochum, Germany.
  • Warburton RJ; Department of Physics, University of Basel, Basel, Switzerland.
Nat Phys ; 19(6): 857-862, 2023.
Article en En | MEDLINE | ID: mdl-37323806
ABSTRACT
The interaction between photons and a single two-level atom constitutes a fundamental paradigm in quantum physics. The nonlinearity provided by the atom leads to a strong dependence of the light-matter interface on the number of photons interacting with the two-level system within its emission lifetime. This nonlinearity unveils strongly correlated quasiparticles known as photon bound states, giving rise to key physical processes such as stimulated emission and soliton propagation. Although signatures consistent with the existence of photon bound states have been measured in strongly interacting Rydberg gases, their hallmark excitation-number-dependent dispersion and propagation velocity have not yet been observed. Here we report the direct observation of a photon-number-dependent time delay in the scattering off a single artificial atom-a semiconductor quantum dot coupled to an optical cavity. By scattering a weak coherent pulse off the cavity-quantum electrodynamics system and measuring the time-dependent output power and correlation functions, we show that single photons and two- and three-photon bound states incur different time delays, becoming shorter for higher photon numbers. This reduced time delay is a fingerprint of stimulated emission, where the arrival of two photons within the lifetime of an emitter causes one photon to stimulate the emission of another.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Phys Año: 2023 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Phys Año: 2023 Tipo del documento: Article País de afiliación: Suiza
...