Your browser doesn't support javascript.
loading
A Multifunctional Nanozyme with NADH Dehydrogenase-Like Activity and Nitric Oxide Release under Near-Infrared Light Irradiation as an Efficient Therapeutic for Antimicrobial Resistance Infection and Wound Healing.
Wang, Yi; Shi, Hong-Dong; Zhang, Hai-Lin; Yu Chen, Yu-; Ren, Bing; Tang, Qi; Sun, Qi; Zhang, Qian-Ling; Liu, Jin-Gang.
Afiliación
  • Wang Y; Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
  • Shi HD; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, Yunnan, 650500, P. R. China.
  • Zhang HL; Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
  • Yu Chen Y; Shenzhen Key Lab of Functional Polymer, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China.
  • Ren B; Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
  • Tang Q; Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
  • Sun Q; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, P. R. China.
  • Zhang QL; Shenzhen Key Lab of Functional Polymer, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China.
  • Liu JG; Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
Adv Healthc Mater ; 12(25): e2300568, 2023 10.
Article en En | MEDLINE | ID: mdl-37326411
In recent years, antimicrobial resistance (AMR) has become one of the greatest threats to human health. There is an urgent need to develop new antibacterial agents to effectively treat AMR infection. Herein, a novel nanozyme platform (Cu,N-GQDs@Ru-NO) is prepared, where Cu,N-doped graphene quantum dots (Cu,N-GQDs) are covalently functionalized with a nitric oxide (NO) donor, ruthenium nitrosyl (Ru-NO). Under 808 nm near-infrared (NIR) light irradiation, Cu,N-GQDs@Ru-NO demonstrates nicotinamide adenine dinucleotide (NADH) dehydrogenase-like activity for photo-oxidizing NADH to NAD+ , thus disrupting the redox balance in bacterial cells and resulting in bacterial death; meanwhile, the onsite NIR light-delivered NO effectively eradicates the methicillin-resistant Staphylococcus aureus (MRSA) bacterial and biofilms, and promotes wound healing; furthermore, the nanozyme shows excellent photothermal effect that enhances the antibacterial efficacy as well. With the combination of NADH dehydrogenase activity, photothermal therapy, and NO gas therapy, the Cu,N-GQDs@Ru-NO nanozyme displays both in vitro and in vivo excellent efficacy for MRSA infection and biofilm eradication, which provides a new therapeutic modality for effectively treating MRSA inflammatory wounds.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 4_TD Problema de salud: 4_antimicrobial_resistance Asunto principal: Staphylococcus aureus Resistente a Meticilina / Grafito Límite: Humans Idioma: En Revista: Adv Healthc Mater Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 4_TD Problema de salud: 4_antimicrobial_resistance Asunto principal: Staphylococcus aureus Resistente a Meticilina / Grafito Límite: Humans Idioma: En Revista: Adv Healthc Mater Año: 2023 Tipo del documento: Article
...